当前位置: 首页>>代码示例>>Python>>正文


Python tensor_shape.dimension_value函数代码示例

本文整理汇总了Python中tensorflow.python.framework.tensor_shape.dimension_value函数的典型用法代码示例。如果您正苦于以下问题:Python dimension_value函数的具体用法?Python dimension_value怎么用?Python dimension_value使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了dimension_value函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

 def build(self, input_shape):
   input_shape = tensor_shape.TensorShape(input_shape)
   if tensor_shape.dimension_value(input_shape[-1]) is None:
     raise ValueError('The last dimension of the inputs to `Dense` '
                      'should be defined. Found `None`.')
   last_dim = tensor_shape.dimension_value(input_shape[-1])
   self.input_spec = InputSpec(min_ndim=2,
                               axes={-1: last_dim})
   self.kernel = self.add_weight(
       'kernel',
       shape=[last_dim, self.units],
       initializer=self.kernel_initializer,
       regularizer=self.kernel_regularizer,
       constraint=self.kernel_constraint,
       dtype=self.dtype,
       trainable=True)
   if self.use_bias:
     self.bias = self.add_weight(
         'bias',
         shape=[self.units,],
         initializer=self.bias_initializer,
         regularizer=self.bias_regularizer,
         constraint=self.bias_constraint,
         dtype=self.dtype,
         trainable=True)
   else:
     self.bias = None
   self.built = True
开发者ID:aeverall,项目名称:tensorflow,代码行数:28,代码来源:core.py

示例2: maybe_check_quadrature_param

def maybe_check_quadrature_param(param, name, validate_args):
  """Helper which checks validity of `loc` and `scale` init args."""
  with ops.name_scope(name="check_" + name, values=[param]):
    assertions = []
    if param.shape.ndims is not None:
      if param.shape.ndims == 0:
        raise ValueError("Mixing params must be a (batch of) vector; "
                         "{}.rank={} is not at least one.".format(
                             name, param.shape.ndims))
    elif validate_args:
      assertions.append(check_ops.assert_rank_at_least(
          param, 1,
          message=("Mixing params must be a (batch of) vector; "
                   "{}.rank is not at least one.".format(
                       name))))

    # TODO(jvdillon): Remove once we support k-mixtures.
    if param.shape.with_rank_at_least(1)[-1] is not None:
      if tensor_shape.dimension_value(param.shape[-1]) != 1:
        raise NotImplementedError("Currently only bimixtures are supported; "
                                  "{}.shape[-1]={} is not 1.".format(
                                      name,
                                      tensor_shape.dimension_value(
                                          param.shape[-1])))
    elif validate_args:
      assertions.append(check_ops.assert_equal(
          array_ops.shape(param)[-1], 1,
          message=("Currently only bimixtures are supported; "
                   "{}.shape[-1] is not 1.".format(name))))

    if assertions:
      return control_flow_ops.with_dependencies(assertions, param)
    return param
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:33,代码来源:vector_diffeomixture.py

示例3: build

 def build(self, input_shape):
   dtype = dtypes.as_dtype(self.dtype or K.floatx())
   if not (dtype.is_floating or dtype.is_complex):
     raise TypeError('Unable to build `Dense` layer with non-floating point '
                     'dtype %s' % (dtype,))
   input_shape = tensor_shape.TensorShape(input_shape)
   if tensor_shape.dimension_value(input_shape[-1]) is None:
     raise ValueError('The last dimension of the inputs to `Dense` '
                      'should be defined. Found `None`.')
   last_dim = tensor_shape.dimension_value(input_shape[-1])
   self.input_spec = InputSpec(min_ndim=2,
                               axes={-1: last_dim})
   self.kernel = self.add_weight(
       'kernel',
       shape=[last_dim, self.units],
       initializer=self.kernel_initializer,
       regularizer=self.kernel_regularizer,
       constraint=self.kernel_constraint,
       dtype=self.dtype,
       trainable=True)
   if self.use_bias:
     self.bias = self.add_weight(
         'bias',
         shape=[self.units,],
         initializer=self.bias_initializer,
         regularizer=self.bias_regularizer,
         constraint=self.bias_constraint,
         dtype=self.dtype,
         trainable=True)
   else:
     self.bias = None
   self.built = True
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:32,代码来源:core.py

示例4: _min_matrix_dim

 def _min_matrix_dim(self):
   """Minimum of domain/range dimension, if statically available, else None."""
   domain_dim = tensor_shape.dimension_value(self.domain_dimension)
   range_dim = tensor_shape.dimension_value(self.range_dimension)
   if domain_dim is None or range_dim is None:
     return None
   return min(domain_dim, range_dim)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:7,代码来源:linear_operator_identity.py

示例5: convert_legacy_structure

def convert_legacy_structure(output_types, output_shapes, output_classes):
  """Returns a `Structure` that represents the given legacy structure.

  This method provides a way to convert from the existing `Dataset` and
  `Iterator` structure-related properties to a `Structure` object. A "legacy"
  structure is represented by the `tf.data.Dataset.output_types`,
  `tf.data.Dataset.output_shapes`, and `tf.data.Dataset.output_classes`
  properties.

  TODO(b/110122868): Remove this function once `Structure` is used throughout
  `tf.data`.

  Args:
    output_types: A nested structure of `tf.DType` objects corresponding to
      each component of a structured value.
    output_shapes: A nested structure of `tf.TensorShape` objects
      corresponding to each component a structured value.
    output_classes: A nested structure of Python `type` objects corresponding
      to each component of a structured value.

  Returns:
    A `Structure`.

  Raises:
    TypeError: If a structure cannot be built from the arguments, because one of
      the component classes in `output_classes` is not supported.
  """
  flat_types = nest.flatten(output_types)
  flat_shapes = nest.flatten(output_shapes)
  flat_classes = nest.flatten(output_classes)
  flat_ret = []
  for flat_type, flat_shape, flat_class in zip(flat_types, flat_shapes,
                                               flat_classes):
    if isinstance(flat_class, Structure):
      flat_ret.append(flat_class)
    elif issubclass(flat_class, sparse_tensor_lib.SparseTensor):
      flat_ret.append(SparseTensorStructure(flat_type, flat_shape))
    elif issubclass(flat_class, ops.Tensor):
      flat_ret.append(TensorStructure(flat_type, flat_shape))
    elif issubclass(flat_class, tensor_array_ops.TensorArray):
      # We sneaked the dynamic_size and infer_shape into the legacy shape.
      flat_ret.append(
          TensorArrayStructure(
              flat_type, flat_shape[2:],
              dynamic_size=tensor_shape.dimension_value(flat_shape[0]),
              infer_shape=tensor_shape.dimension_value(flat_shape[1])))
    else:
      # NOTE(mrry): Since legacy structures produced by iterators only
      # comprise Tensors, SparseTensors, and nests, we do not need to
      # support all structure types here.
      raise TypeError(
          "Could not build a structure for output class %r" % (flat_class,))

  ret = nest.pack_sequence_as(output_classes, flat_ret)
  if isinstance(ret, Structure):
    return ret
  else:
    return NestedStructure(ret)
开发者ID:aritratony,项目名称:tensorflow,代码行数:58,代码来源:structure.py

示例6: _inverse_event_shape

 def _inverse_event_shape(self, output_shape):
   batch_shape, n1, n2 = (output_shape[:-2],
                          tensor_shape.dimension_value(output_shape[-2]),
                          tensor_shape.dimension_value(output_shape[-1]))
   if n1 is None or n2 is None:
     m = None
   elif n1 != n2:
     raise ValueError("Matrix must be square. (saw [{}, {}])".format(n1, n2))
   else:
     m = n1 * (n1 + 1) / 2
   return batch_shape.concatenate([m])
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:11,代码来源:fill_triangular.py

示例7: _forward

  def _forward(self, x):
    if self._unroll_loop:
      event_size = tensor_shape.dimension_value(
          x.shape.with_rank_at_least(1)[-1])
      if event_size is None:
        raise ValueError(
            "The final dimension of `x` must be known at graph construction "
            "time if `unroll_loop=True`. `x.shape: %r`" % x.shape)
      y = array_ops.zeros_like(x, name="y0")

      for _ in range(event_size):
        shift, log_scale = self._shift_and_log_scale_fn(y)
        # next_y = scale * x + shift
        next_y = x
        if log_scale is not None:
          next_y *= math_ops.exp(log_scale)
        if shift is not None:
          next_y += shift
        y = next_y
      return y

    event_size = array_ops.shape(x)[-1]
    # If the event size is available at graph construction time, we can inform
    # the graph compiler of the maximum number of steps. If not,
    # static_event_size will be None, and the maximum_iterations argument will
    # have no effect.
    static_event_size = tensor_shape.dimension_value(
        x.shape.with_rank_at_least(1)[-1])
    y0 = array_ops.zeros_like(x, name="y0")
    # call the template once to ensure creation
    _ = self._shift_and_log_scale_fn(y0)

    def _loop_body(index, y0):
      """While-loop body for autoregression calculation."""
      # Set caching device to avoid re-getting the tf.Variable for every while
      # loop iteration.
      with variable_scope_lib.variable_scope(
          variable_scope_lib.get_variable_scope()) as vs:
        if vs.caching_device is None:
          vs.set_caching_device(lambda op: op.device)
        shift, log_scale = self._shift_and_log_scale_fn(y0)
      y = x
      if log_scale is not None:
        y *= math_ops.exp(log_scale)
      if shift is not None:
        y += shift
      return index + 1, y

    _, y = control_flow_ops.while_loop(
        cond=lambda index, _: index < event_size,
        body=_loop_body,
        loop_vars=(0, y0),
        maximum_iterations=static_event_size)
    return y
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:54,代码来源:masked_autoregressive.py

示例8: build

  def build(self, input_shape):
    input_shape = tensor_shape.TensorShape(input_shape)
    channel_axis = 1 if self.data_format == 'channels_first' else -1
    if tensor_shape.dimension_value(input_shape[channel_axis]) is None:
      raise ValueError('The channel dimension of the inputs '
                       'should be defined. Found `None`.')
    input_dim = tensor_shape.dimension_value(input_shape[channel_axis])
    kernel_shape = self.kernel_size + (input_dim, self.filters)
    self.mask = self.add_variable(
        name='mask',
        shape=kernel_shape,
        initializer=init_ops.ones_initializer(),
        trainable=False,
        dtype=self.dtype)

    self.kernel = self.add_variable(
        name='kernel',
        shape=kernel_shape,
        initializer=self.kernel_initializer,
        regularizer=self.kernel_regularizer,
        trainable=True,
        dtype=self.dtype)

    self.threshold = self.add_variable(
        name='threshold',
        shape=[],
        initializer=init_ops.zeros_initializer(),
        trainable=False,
        dtype=self.dtype)

    # Add masked_weights in the weights namescope so as to make it easier
    # for the quantization library to add quant ops.
    self.masked_kernel = math_ops.multiply(self.mask, self.kernel,
                                           MASKED_WEIGHT_NAME)

    ops.add_to_collection(MASK_COLLECTION, self.mask)
    ops.add_to_collection(MASKED_WEIGHT_COLLECTION, self.masked_kernel)
    ops.add_to_collection(THRESHOLD_COLLECTION, self.threshold)
    ops.add_to_collection(WEIGHT_COLLECTION, self.kernel)

    if self.use_bias:
      self.bias = self.add_variable(
          name='bias',
          shape=(self.filters,),
          initializer=self.bias_initializer,
          regularizer=self.bias_regularizer,
          trainable=True,
          dtype=self.dtype)
    else:
      self.bias = None
    self.input_spec = base.InputSpec(
        ndim=self.rank + 2, axes={channel_axis: input_dim})
    self.built = True
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:53,代码来源:core_layers.py

示例9: recalculate_output_shapes

 def recalculate_output_shapes(output_shapes):
   """Recalculates the output_shapes after dividing it by num_workers."""
   if len(output_shapes) < 1:
     raise ValueError("Input shape should have at least one dimension.")
   if (tensor_shape.dimension_value(output_shapes[0]) and
       tensor_shape.dimension_value(output_shapes[0]) % num_workers != 0):
     raise errors.InvalidArgumentError(
         None, None,
         "First dim of input shape: %d is not divisible by num_workers: %d" %
         (output_shapes[0], num_workers))
   output_dims = [d for d in output_shapes.dims]
   output_dims[0] = output_dims[0] // num_workers
   return tensor_shape.TensorShape(output_dims)
开发者ID:aritratony,项目名称:tensorflow,代码行数:13,代码来源:distribute.py

示例10: _set_diag_operators

 def _set_diag_operators(self, diag_update, is_diag_update_positive):
   """Set attributes self._diag_update and self._diag_operator."""
   if diag_update is not None:
     self._diag_operator = linear_operator_diag.LinearOperatorDiag(
         self._diag_update, is_positive_definite=is_diag_update_positive)
     self._diag_inv_operator = linear_operator_diag.LinearOperatorDiag(
         1. / self._diag_update, is_positive_definite=is_diag_update_positive)
   else:
     if tensor_shape.dimension_value(self.u.shape[-1]) is not None:
       r = tensor_shape.dimension_value(self.u.shape[-1])
     else:
       r = array_ops.shape(self.u)[-1]
     self._diag_operator = linear_operator_identity.LinearOperatorIdentity(
         num_rows=r, dtype=self.dtype)
     self._diag_inv_operator = self._diag_operator
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:15,代码来源:linear_operator_low_rank_update.py

示例11: crf_log_likelihood

def crf_log_likelihood(inputs,
                       tag_indices,
                       sequence_lengths,
                       transition_params=None):
  """Computes the log-likelihood of tag sequences in a CRF.

  Args:
    inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
        to use as input to the CRF layer.
    tag_indices: A [batch_size, max_seq_len] matrix of tag indices for which we
        compute the log-likelihood.
    sequence_lengths: A [batch_size] vector of true sequence lengths.
    transition_params: A [num_tags, num_tags] transition matrix, if available.
  Returns:
    log_likelihood: A [batch_size] `Tensor` containing the log-likelihood of
      each example, given the sequence of tag indices.
    transition_params: A [num_tags, num_tags] transition matrix. This is either
        provided by the caller or created in this function.
  """
  # Get shape information.
  num_tags = tensor_shape.dimension_value(inputs.shape[2])

  # Get the transition matrix if not provided.
  if transition_params is None:
    transition_params = vs.get_variable("transitions", [num_tags, num_tags])

  sequence_scores = crf_sequence_score(inputs, tag_indices, sequence_lengths,
                                       transition_params)
  log_norm = crf_log_norm(inputs, sequence_lengths, transition_params)

  # Normalize the scores to get the log-likelihood per example.
  log_likelihood = sequence_scores - log_norm
  return log_likelihood, transition_params
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:33,代码来源:crf.py

示例12: testUnknownIndices

 def testUnknownIndices(self):
   params = constant_op.constant([[0, 1, 2]])
   indices = array_ops.placeholder(dtypes.int32)
   gather_nd_t = array_ops.gather_nd(params, indices)
   shape = gather_nd_t.get_shape()
   self.assertEqual(None, shape.ndims)
   self.assertEqual(None, tensor_shape.dimension_value(shape[0]))
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:7,代码来源:gather_nd_op_test.py

示例13: rank

 def rank(self):
   """The number of dimensions in this shape, or None if unknown."""
   inner_ndims = tensor_shape.dimension_value(self._inner_dim_sizes.shape[0])
   if inner_ndims is None:
     return None
   else:
     return len(self._partitioned_dim_sizes) + inner_ndims
开发者ID:aritratony,项目名称:tensorflow,代码行数:7,代码来源:ragged_tensor_shape.py

示例14: _create_vars

  def _create_vars(self, var_list, state):
    # Construct ordered dictionary for variable dimensions, sorted by name.
    shape_dict = {}
    for v in var_list:
      shape_dict[v.name] = tensor_shape.dimension_value(np.prod(v.get_shape()))
    self.shape_dict = collections.OrderedDict(
        sorted(shape_dict.items(), key=lambda t: t[0]))

    # Assign each variable its location in flat_grad. The locations are based on
    # the order of sorted names.
    idx = 0
    for v_name, v_dim in self.shape_dict.items():
      self.index_dict[v_name] = idx
      idx += v_dim

    state.create_non_slot(
        initial_value=math_ops.cast(0., dtype=var_list[0].dtype.base_dtype),
        name="global_step")

    # Buffer for keeping past gradients.
    window = state.get_hyper("window")
    grad_buffer_init = array_ops.zeros(
        [window, idx], dtype=var_list[0].dtype.base_dtype)
    state.create_non_slot(initial_value=grad_buffer_init, name="grad_buffer")

    state.create_non_slot(
        initial_value=array_ops.zeros(
            (idx,), dtype=var_list[0].dtype.base_dtype),
        name="moment1")

    # Flattened gradient that contains gradients for all variables in the model.
    state.create_non_slot(
        initial_value=array_ops.zeros(
            (idx,), dtype=var_list[0].dtype.base_dtype),
        name="flat_grad")
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:35,代码来源:ggt.py

示例15: row_splits_to_segment_ids

def row_splits_to_segment_ids(splits, name=None):
  """Generates the segmentation corresponding to a RaggedTensor `row_splits`.

  Returns an integer vector `segment_ids`, where `segment_ids[i] == j` if
  `splits[j] <= i < splits[j+1]`.  Example:

  ```python
  >>> ragged.row_splits_to_segment_ids([0, 3, 3, 5, 6, 9]).eval()
  [ 0 0 0 2 2 3 4 4 4 ]
  ```

  Args:
    splits: A sorted 1-D int64 Tensor.  `splits[0]` must be zero.
    name: A name prefix for the returned tensor (optional).

  Returns:
    A sorted 1-D int64 Tensor, with `shape=[splits[-1]]`

  Raises:
    ValueError: If `splits` is invalid.
  """
  with ops.name_scope(name, "RaggedSplitsToSegmentIds", [splits]) as name:
    splits = ops.convert_to_tensor(splits, dtype=dtypes.int64, name="splits")
    splits.shape.assert_has_rank(1)
    if tensor_shape.dimension_value(splits.shape[0]) == 0:
      raise ValueError("Invalid row_splits: []")
    row_lengths = splits[1:] - splits[:-1]
    nrows = array_ops.shape(splits, out_type=dtypes.int64)[-1] - 1
    indices = math_ops.range(nrows)
    return ragged_util.repeat(indices, repeats=row_lengths, axis=0)
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:30,代码来源:segment_id_ops.py


注:本文中的tensorflow.python.framework.tensor_shape.dimension_value函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。