本文整理汇总了Python中tensorflow.python.framework.ops.register_proto_function函数的典型用法代码示例。如果您正苦于以下问题:Python register_proto_function函数的具体用法?Python register_proto_function怎么用?Python register_proto_function使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了register_proto_function函数的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ValueError
sess: `Session` used to run the queue ops. Defaults to the
default session.
coord: Optional `Coordinator` for coordinating the started threads.
daemon: Whether the threads should be marked as `daemons`, meaning
they don't block program exit.
start: Set to `False` to only create the threads, not start them.
collection: A `GraphKey` specifying the graph collection to
get the queue runners from. Defaults to `GraphKeys.QUEUE_RUNNERS`.
Returns:
A list of threads.
"""
if sess is None:
sess = ops.get_default_session()
if not sess:
raise ValueError("Cannot start queue runners: No default session is "
"registered. Use `with sess.as_default()` or pass an "
"explicit session to tf.start_queue_runners(sess=sess)")
with sess.graph.as_default():
threads = []
for qr in ops.get_collection(collection):
threads.extend(qr.create_threads(sess, coord=coord, daemon=daemon,
start=start))
return threads
ops.register_proto_function(ops.GraphKeys.QUEUE_RUNNERS,
proto_type=queue_runner_pb2.QueueRunnerDef,
to_proto=QueueRunner.to_proto,
from_proto=QueueRunner.from_proto)
示例2: _to_proto_fn
def _to_proto_fn(v, export_scope=None):
"""Converts Variable and ResourceVariable to VariableDef for collections."""
return v.to_proto(export_scope=export_scope)
def _from_proto_fn(v, import_scope=None):
"""Creates Variable or ResourceVariable from VariableDef as needed."""
if v.is_resource:
return ResourceVariable.from_proto(v, import_scope=import_scope)
return variables.Variable.from_proto(v, import_scope=import_scope)
ops.register_proto_function(
ops.GraphKeys.GLOBAL_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.TRAINABLE_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.MOVING_AVERAGE_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=_to_proto_fn,
from_proto=_from_proto_fn)
ops.register_proto_function(
ops.GraphKeys.LOCAL_VARIABLES,
proto_type=variable_pb2.VariableDef,
示例3: getattr
hparam_proto = hparam_pb2.HParamDef()
for name in self._hparam_types:
# Parse the values.
param_type, is_list = self._hparam_types.get(name, (None, None))
kind = HParams._get_kind_name(param_type, is_list)
if is_list:
if kind.startswith('bytes'):
v_list = [compat.as_bytes(v) for v in getattr(self, name)]
else:
v_list = [v for v in getattr(self, name)]
getattr(hparam_proto.hparam[name], kind).value.extend(v_list)
else:
v = getattr(self, name)
if kind.startswith('bytes'):
v = compat.as_bytes(getattr(self, name))
setattr(hparam_proto.hparam[name], kind, v)
return hparam_proto
@staticmethod
def from_proto(hparam_def, import_scope=None): # pylint: disable=unused-argument
return HParams(hparam_def=hparam_def)
ops.register_proto_function(
'hparams',
proto_type=hparam_pb2.HParamDef,
to_proto=HParams.to_proto,
from_proto=HParams.from_proto)
示例4:
variable_names_tensor = array_ops.constant([s.op.name for s in var_list])
# Return a 1-D tensor containing all the names of uninitialized variables.
return array_ops.boolean_mask(variable_names_tensor, variables_mask)
# pylint: disable=protected-access
ops.register_tensor_conversion_function(Variable, Variable._TensorConversionFunction)
Variable._OverloadAllOperators()
ops.register_tensor_conversion_function(PartitionedVariable, PartitionedVariable._TensorConversionFunction)
# pylint: enable=protected-access
ops.register_dense_tensor_like_type(Variable)
ops.register_proto_function(
ops.GraphKeys.GLOBAL_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=Variable.to_proto,
from_proto=Variable.from_proto,
)
ops.register_proto_function(
ops.GraphKeys.TRAINABLE_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=Variable.to_proto,
from_proto=Variable.from_proto,
)
ops.register_proto_function(
ops.GraphKeys.MOVING_AVERAGE_VARIABLES,
proto_type=variable_pb2.VariableDef,
to_proto=Variable.to_proto,
from_proto=Variable.from_proto,
)
示例5: _as_meta_graph_def
This function exports the graph, saver, and collection objects into
`MetaGraphDef` protocol buffer with the intension of it being imported
at a later time or location to restart training, run inference, or be
a subgraph.
Args:
filename: Optional filename including the path for writing the
generated `MetaGraphDef` protocol buffer.
meta_info_def: `MetaInfoDef` protocol buffer.
graph_def: `GraphDef` protocol buffer.
saver_def: `SaverDef` protocol buffer.
collection_list: List of string keys to collect.
Returns:
A `MetaGraphDef` proto.
"""
meta_graph_def = _as_meta_graph_def(meta_info_def=meta_info_def,
graph_def=graph_def,
saver_def=saver_def,
collection_list=collection_list)
if filename:
training_util.write_graph(meta_graph_def, os.path.dirname(filename),
os.path.basename(filename))
return meta_graph_def
ops.register_proto_function(ops.GraphKeys.SAVERS,
proto_type=saver_pb2.SaverDef,
to_proto=Saver.to_proto,
from_proto=Saver.from_proto)