当前位置: 首页>>代码示例>>Python>>正文


Python ops.name_scope函数代码示例

本文整理汇总了Python中tensorflow.python.framework.ops.name_scope函数的典型用法代码示例。如果您正苦于以下问题:Python name_scope函数的具体用法?Python name_scope怎么用?Python name_scope使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了name_scope函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

  def __init__(self,
               mu,
               cov,
               validate_args=True,
               allow_nan_stats=False,
               name="MultivariateNormalCov"):
    """Multivariate Normal distributions on `R^k`.

    User must provide means `mu`, and an instance of `OperatorPDBase`, `cov`,
    which determines the covariance.

    Args:
      mu: Floating point tensor with shape `[N1,...,Nb, k]`, `b >= 0`.
      cov: Instance of `OperatorPDBase` with same `dtype` as `mu` and shape
        `[N1,...,Nb, k, k]`.
      validate_args: Whether to validate input with asserts.  If `validate_args`
        is `False`, and the inputs are invalid, correct behavior is not
        guaranteed.
      allow_nan_stats:  `Boolean`, default `False`.  If `False`, raise an
        exception if a statistic (e.g. mean/mode/etc...) is undefined for any
        batch member If `True`, batch members with valid parameters leading to
        undefined statistics will return NaN for this statistic.
      name: The name to give Ops created by the initializer.

    Raises:
      TypeError: If `mu` and `cov` are different dtypes.
    """
    self._allow_nan_stats = allow_nan_stats
    self._validate_args = validate_args
    with ops.name_scope(name):
      with ops.name_scope("init", values=[mu] + cov.inputs):
        self._cov = cov
        self._mu = self._check_mu(mu)
        self._name = name
开发者ID:abhishekns,项目名称:tensorflow,代码行数:34,代码来源:mvn.py

示例2: log_prob

  def log_prob(self, x, name="log_prob"):
    """`Log(P[counts])`, computed for every batch member.

    Args:
      x:  Non-negative floating point tensor whose shape can
        be broadcast with `self.a` and `self.b`.  For fixed leading
        dimensions, the last dimension represents counts for the corresponding
        Beta distribution in `self.a` and `self.b`. `x` is only legal if
        0 < x < 1.
      name:  Name to give this Op, defaults to "log_prob".

    Returns:
      Log probabilities for each record, shape `[N1,...,Nm]`.
    """
    a = self._a
    b = self._b
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[a, x]):
        x = self._check_x(x)

        unnorm_pdf = (a - 1) * math_ops.log(x) + (
            b - 1) * math_ops.log(1 - x)
        normalization_factor = -(math_ops.lgamma(a) + math_ops.lgamma(b)
                                 - math_ops.lgamma(a + b))
        log_prob = unnorm_pdf + normalization_factor

        return log_prob
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:27,代码来源:beta.py

示例3: __init__

  def __init__(self, example_indices, feature_indices, feature_values):
    """Creates a `SparseFeatureColumn` representation.

    Args:
      example_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
      python lists, or numpy arrays.
      feature_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
      python lists, or numpy arrays.
      feature_values: An optional 1-D tensor float tensor of shape `[N]`. Also,
      accepts python lists, or numpy arrays.

    Returns:
      A `SparseFeatureColumn`
    """
    with name_scope(None, 'SparseFeatureColumn',
                    [example_indices, feature_indices]):
      self._example_indices = convert_to_tensor(example_indices,
                                                name='example_indices',
                                                dtype=dtypes.int64)
      self._feature_indices = convert_to_tensor(feature_indices,
                                                name='feature_indices',
                                                dtype=dtypes.int64)
    self._feature_values = None
    if feature_values is not None:
      with name_scope(None, 'SparseFeatureColumn', [feature_values]):
        self._feature_values = convert_to_tensor(feature_values,
                                                 name='feature_values',
                                                 dtype=dtypes.float32)
开发者ID:billho,项目名称:tensorflow,代码行数:28,代码来源:sdca_ops.py

示例4: __init__

  def __init__(self, shape, dtype, scale=None,
               verify_pd=True, name="OperatorPDIdentity"):
    """Initialize an `OperatorPDIdentity`.

    Args:
      shape:  `int32` rank 1 `Tensor` of length at least 2, and with the last
        two entries equal (since this is a square matrix).
      dtype:  Data type of the matrix that this operator represents.
      scale: floating point rank 0 `Tensor` representing a scalar to
        multiply the identity matrix by. This will default to a scale of 1.
        This will be converted to the dtype `dtype`.
      verify_pd:  `Boolean`, if `True`, asserts are added to the initialization
        args to ensure they define this operator as a square (batch) matrix.
      name:  Name to prepend to `Ops`.
    """

    # Grab static shape if available now.
    with ops.name_scope(name):
      with ops.name_scope("init", values=[shape, scale]):
        self._dtype = dtypes.as_dtype(dtype)
        self._verify_pd = verify_pd
        self._name = name

        # Store the static shape (if possible) right now before adding the
        # asserts, since the asserts prevent .constant_value from working.
        shape = ops.convert_to_tensor(shape, name="shape")
        self._get_shape = tensor_shape.TensorShape(
            tensor_util.constant_value(shape))
        self._shape_arg = self._check_shape(shape)
        self._scale = self._check_scale(scale, self._dtype)
开发者ID:BloodD,项目名称:tensorflow,代码行数:30,代码来源:operator_pd_identity.py

示例5: _concat

    def _concat(self):
        """Returns the overall concatenated value as a `Tensor`.

    This is different from using the partitioned variable directly as a tensor
    (through tensor conversion and `as_tensor`) in that it creates a new set of
    operations that keeps the control dependencies from its scope.

    Returns:
      `Tensor` containing the concatenated value.
    """
        if len(self._variable_list) == 1:
            with ops.name_scope(None):
                return array_ops.identity(self._variable_list[0], name=self._name)

        partition_axes = self._partition_axes()

        if len(partition_axes) > 1:
            raise NotImplementedError(
                "Cannot concatenate along more than one dimension: %s.  "
                "Multi-axis partition concat is not supported" % str(partition_axes)
            )
        partition_ix = partition_axes[0]

        with ops.name_scope(self._name + "/ConcatPartitions/"):
            concatenated = array_ops.concat(partition_ix, self._variable_list)

        with ops.name_scope(None):
            return array_ops.identity(concatenated, name=self._name)
开发者ID:shakamunyi,项目名称:tensorflow,代码行数:28,代码来源:variables.py

示例6: create_estimator_spec

  def create_estimator_spec(
      self, features, mode, logits, labels=None, train_op_fn=None):
    """See `Head`."""
    with ops.name_scope('head'):
      logits = head_lib._check_logits(logits, self.logits_dimension)  # pylint:disable=protected-access

      # Predict.
      pred_keys = prediction_keys.PredictionKeys
      with ops.name_scope(None, 'predictions', (logits,)):
        probabilities = math_ops.sigmoid(logits, name=pred_keys.PROBABILITIES)
        predictions = {
            pred_keys.LOGITS: logits,
            pred_keys.PROBABILITIES: probabilities,
        }
      if mode == model_fn.ModeKeys.PREDICT:
        return model_fn.EstimatorSpec(
            mode=model_fn.ModeKeys.PREDICT,
            predictions=predictions,
            export_outputs={
                '': export_output.ClassificationOutput(scores=probabilities)
            })

      # Eval.
      unweighted_loss, processed_labels = self.create_loss(
          features=features, mode=mode, logits=logits, labels=labels)
      # Averages loss over classes.
      per_example_loss = math_ops.reduce_mean(
          unweighted_loss, axis=-1, keep_dims=True)
      weights = head_lib._weights(features, self._weight_column)  # pylint:disable=protected-access
      training_loss = losses.compute_weighted_loss(
          per_example_loss, weights=weights, reduction=losses.Reduction.SUM)
      if mode == model_fn.ModeKeys.EVAL:
        return model_fn.EstimatorSpec(
            mode=model_fn.ModeKeys.EVAL,
            predictions=predictions,
            loss=training_loss,
            eval_metric_ops=self._eval_metric_ops(
                labels=processed_labels,
                probabilities=probabilities,
                weights=weights,
                per_example_loss=per_example_loss))

      # Train.
      if train_op_fn is None:
        raise ValueError('train_op_fn can not be None.')
    with ops.name_scope(''):
      summary.scalar(
          head_lib._summary_key(self._name, metric_keys.MetricKeys.LOSS),  # pylint:disable=protected-access
          training_loss)
      summary.scalar(
          head_lib._summary_key(  # pylint:disable=protected-access
              self._name, metric_keys.MetricKeys.LOSS_MEAN),
          losses.compute_weighted_loss(
              unweighted_loss, weights=weights,
              reduction=losses.Reduction.MEAN))
    return model_fn.EstimatorSpec(
        mode=model_fn.ModeKeys.TRAIN,
        predictions=predictions,
        loss=training_loss,
        train_op=train_op_fn(training_loss))
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:60,代码来源:head.py

示例7: apply_gradients

  def apply_gradients(self, grads_and_vars, name=None):
    """Apply gradients to variables.

    This is the second part of `minimize()`. It returns an `Operation` that
    applies gradients.

    Args:
      grads_and_vars: List of (gradient, variable) pairs as returned by
        `compute_gradients()`.
      name: Optional name for the returned operation.  Default to the name
        passed to the `Optimizer` constructor.

    Returns:
      An `Operation` that applies the specified gradients. If `global_step`
      was not None, that operation also increments `global_step`.

    Raises:
      TypeError: If `grads_and_vars` is malformed.
      ValueError: If none of the variables have gradients.
    """
    grads_and_vars = _filter_grads(grads_and_vars)
    var_list = [v for (_, v) in grads_and_vars]
    if distribution_strategy_context.has_distribution_strategy():
      reduced_grads = merge_grads(grads_and_vars)
      grads_and_vars = zip(reduced_grads, var_list)

    with ops.init_scope():
      self._prepare()
      self._create_slots(var_list)
    update_ops = []

    def update_grad_to_var(grad, var):
      """Apply gradient to variable."""
      if isinstance(var, ops.Tensor):
        raise NotImplementedError("Trying to update a Tensor ", var)
      if isinstance(grad, ops.IndexedSlices):
        if var.constraint is not None:
          raise RuntimeError(
              "Cannot use a constraint function on a sparse variable.")
        return self._resource_apply_sparse_duplicate_indices(
            grad.values, var, grad.indices)
      update_op = self._resource_apply_dense(grad, var)
      if var.constraint is not None:
        with ops.control_dependencies([update_op]):
          return var.assign(var.constraint(var))
      else:
        return update_op

    with ops.name_scope(name, self._name) as name:
      for grad, var in grads_and_vars:
        scope_name = ("" if ops.executing_eagerly_outside_functions() else
                      "_" + var.op.name)
        with ops.name_scope("update" + scope_name):
          update_ops.append(update_grad_to_var(grad, var))
      # control dependencies does not work in per replica mode, please change
      # this once b/118841692 is fixed.
      # with ops.control_dependencies(update_ops):
      #   apply_updates = self._iterations.assign_add(1).op
      apply_updates = merge_update_step(update_ops, self.iterations)
      return apply_updates
开发者ID:aeverall,项目名称:tensorflow,代码行数:60,代码来源:optimizer_v2.py

示例8: log_prob

  def log_prob(self, event, name="log_prob"):
    """Log of the probability mass function.

    Args:
      event: `int32` or `int64` binary Tensor.
      name: A name for this operation (optional).

    Returns:
      The log-probabilities of the events.
    """
    # TODO(jaana): The current sigmoid_cross_entropy_with_logits has
    # inconsistent  behavior for logits = inf/-inf.
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self.logits, event]):
        event = ops.convert_to_tensor(event, name="event")
        event = math_ops.cast(event, self.logits.dtype)
        logits = self.logits
        # sigmoid_cross_entropy_with_logits doesn't broadcast shape,
        # so we do this here.
        # TODO(b/30637701): Check dynamic shape, and don't broadcast if the
        # dynamic shapes are the same.
        if (not event.get_shape().is_fully_defined() or
            not logits.get_shape().is_fully_defined() or
            event.get_shape() != logits.get_shape()):
          logits = array_ops.ones_like(event) * logits
          event = array_ops.ones_like(logits) * event
        return -nn.sigmoid_cross_entropy_with_logits(logits, event)
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:27,代码来源:bernoulli.py

示例9: mode

  def mode(self, name="mode"):
    """Mode of each batch member.

    The mode of a gamma distribution is `(alpha - 1) / beta` when `alpha > 1`,
    and `NaN` otherwise.  If `self.allow_nan_stats` is `False`, an exception
    will be raised rather than returning `NaN`.

    Args:
      name:  A name to give this op.

    Returns:
      The mode for every batch member, a `Tensor` with same `dtype` as self.
    """
    alpha = self._alpha
    beta = self._beta
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[alpha, beta]):
        mode_if_defined = (alpha - 1.0) / beta
        if self.allow_nan_stats:
          alpha_ge_1 = alpha >= 1.0
          nan = np.nan * self._ones()
          return math_ops.select(alpha_ge_1, mode_if_defined, nan)
        else:
          one = constant_op.constant(1.0, dtype=self.dtype)
          return control_flow_ops.with_dependencies(
              [check_ops.assert_less(
                  one, alpha,
                  message="mode not defined for components of alpha <= 1"
              )], mode_if_defined)
开发者ID:alephman,项目名称:Tensorflow,代码行数:29,代码来源:gamma.py

示例10: decorated

 def decorated(*args):
   with ops.name_scope("batch") as name:
     for a in args:
       if not isinstance(a, ops.Tensor):
         raise ValueError("All arguments to functions decorated with "
                          "`batch_function`  are supposed to be Tensors; "
                          "found %s" % repr(a))
     batched_tensors, batch_index, id_t = gen_batch_ops.batch(
         args,
         num_batch_threads=num_batch_threads,
         max_batch_size=max_batch_size,
         batch_timeout_micros=batch_timeout_micros,
         max_enqueued_batches=max_enqueued_batches,
         allowed_batch_sizes=allowed_batch_sizes,
         grad_timeout_micros=grad_timeout_micros,
         shared_name=name)
     outputs = f(*batched_tensors)
     if isinstance(outputs, ops.Tensor):
       outputs_list = [outputs]
     else:
       outputs_list = outputs
     with ops.name_scope("unbatch") as unbatch_name:
       unbatched = [
           gen_batch_ops.unbatch(t, batch_index, id_t,
                                 timeout_micros=unbatch_timeout_micros,
                                 shared_name=unbatch_name + "/" + t.name)
           for t in outputs_list]
     if isinstance(outputs, ops.Tensor):
       return unbatched[0]
     return unbatched
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:30,代码来源:batch_ops.py

示例11: variance

    def variance(self, name="variance"):
        """Variance of the Wishart distribution.

    This function should not be confused with the covariance of the Wishart. The
    covariance matrix would have shape `q x q` where,
    `q = dimension * (dimension+1) / 2`
    and having elements corresponding to some mapping from a lower-triangular
    matrix to a vector-space.

    This function returns the diagonal of the Covariance matrix but shaped
    as a `dimension x dimension` matrix.

    Args:
      name: The name of this op.

    Returns:
      variance: `Tensor` of dtype `self.dtype`.
    """
        with ops.name_scope(self.name):
            with ops.name_scope(name, values=list(self.inputs.values())):
                x = math_ops.sqrt(self.df) * self.scale_operator_pd.to_dense()
                d = array_ops.expand_dims(array_ops.batch_matrix_diag_part(x), -1)
                v = math_ops.square(x) + math_ops.batch_matmul(d, d, adj_y=True)
                if self.cholesky_input_output_matrices:
                    return linalg_ops.batch_cholesky(v)
                else:
                    return v
开发者ID:damienmg,项目名称:tensorflow,代码行数:27,代码来源:wishart.py

示例12: sample_n

  def sample_n(self, n, seed=None, name="sample_n"):
    """Sample `n` observations from the Normal Distributions.

    Args:
      n: `Scalar`, type int32, the number of observations to sample.
      seed: Python integer, the random seed.
      name: The name to give this op.

    Returns:
      samples: `[n, ...]`, a `Tensor` of `n` samples for each
        of the distributions determined by broadcasting the hyperparameters.
    """
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self._mu, self._sigma, n]):
        broadcast_shape = common_shapes.broadcast_shape(
            self._mu.get_shape(), self._sigma.get_shape())
        n = ops.convert_to_tensor(n)
        shape = array_ops.concat(0, ([n], array_ops.shape(self.mean())))
        sampled = random_ops.random_normal(
            shape=shape, mean=0, stddev=1, dtype=self._mu.dtype, seed=seed)

        # Provide some hints to shape inference
        n_val = tensor_util.constant_value(n)
        final_shape = tensor_shape.vector(n_val).concatenate(broadcast_shape)
        sampled.set_shape(final_shape)

        return sampled * self._sigma + self._mu
开发者ID:alephman,项目名称:Tensorflow,代码行数:27,代码来源:normal.py

示例13: sqrt_matmul

  def sqrt_matmul(self, x, transpose_x=False, name="sqrt_matmul"):
    """Left (batch) matmul `x` by a sqrt of this matrix: `Sx` where `A = S S^T`.

    `x` is a batch matrix with compatible shape if

    ```
    self.shape = [N1,...,Nn] + [k, k]
    x.shape = [N1,...,Nn] + [k, r]
    ```

    Args:
      x: `Tensor` with shape `self.batch_shape + [k, r]` and same `dtype` as
        this `Operator`.
      transpose_x: If `True`, `x` is transposed before multiplication.
      name:  A name scope to use for ops added by this method.

    Returns:
      A result equivalent to `tf.matmul(self.sqrt_to_dense(), x)`.
    """
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[x] + self.inputs):
        x = ops.convert_to_tensor(x, name="x")
        return self._dispatch_based_on_batch(
            self._batch_sqrt_matmul, self._sqrt_matmul, x=x,
            transpose_x=transpose_x)
开发者ID:ComeOnGetMe,项目名称:tensorflow,代码行数:25,代码来源:operator_pd.py

示例14: log_prob

  def log_prob(self, counts, name="log_prob"):
    """`Log(P[counts])`, computed for every batch member.

    For each batch member of counts `k`, `P[counts]` is the probability that
    after sampling `n` draws from this Binomial distribution, the number of
    successes is `k`.  Note that different sequences of draws can result in the
    same counts, thus the probability includes a combinatorial coefficient.

    Args:
      counts:  Non-negative tensor with dtype `dtype` and whose shape can be
        broadcast with `self.p` and `self.n`. `counts` is only legal if it is
        less than or equal to `n` and its components are equal to integer
        values.
      name:  Name to give this Op, defaults to "log_prob".

    Returns:
      Log probabilities for each record, shape `[N1,...,Nm]`.
    """
    n = self._n
    p = self._p
    with ops.name_scope(self.name):
      with ops.name_scope(name, values=[self._n, self._p, counts]):
        counts = self._check_counts(counts)

        prob_prob = counts * math_ops.log(p) + (
            n - counts) * math_ops.log(1 - p)

        combinations = math_ops.lgamma(n + 1) - math_ops.lgamma(
            counts + 1) - math_ops.lgamma(n - counts + 1)
        log_prob = prob_prob + combinations
        return log_prob
开发者ID:alephman,项目名称:Tensorflow,代码行数:31,代码来源:binomial.py

示例15: testImportGraphWithFunctionTwice

  def testImportGraphWithFunctionTwice(self):
    g = ops.Graph()
    with g.as_default():

      @function.Defun()
      def Add2(x, y):
        return math_ops.add(x, y)

      x = array_ops.placeholder(dtype=dtypes.float32, name="x")
      y = array_ops.placeholder(dtype=dtypes.float32, name="y")
      _ = Add2(x, y, name="z")  # pylint: disable=unexpected-keyword-arg

    gdef = g.as_graph_def()

    x = random_ops.random_uniform(dtype=dtypes.float32, shape=())
    y = random_ops.random_uniform(dtype=dtypes.float32, shape=())
    input_map = {"x:0": x, "y:0": y}

    with ops.name_scope("first"):
      z1 = importer.import_graph_def(gdef, return_elements=["z:0"],
                                     input_map=input_map)[0]

    with ops.name_scope("second"):
      z2 = importer.import_graph_def(gdef, return_elements=["z:0"],
                                     input_map=input_map)[0]

    with self.test_session() as sess:
      z1_val, z2_val = sess.run((z1, z2))
      self.assertAllEqual(z1_val, z2_val)
开发者ID:clsung,项目名称:tensorflow,代码行数:29,代码来源:importer_test.py


注:本文中的tensorflow.python.framework.ops.name_scope函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。