当前位置: 首页>>代码示例>>Python>>正文


Python ops.get_default_session函数代码示例

本文整理汇总了Python中tensorflow.python.framework.ops.get_default_session函数的典型用法代码示例。如果您正苦于以下问题:Python get_default_session函数的具体用法?Python get_default_session怎么用?Python get_default_session使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get_default_session函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_logging_trainable

 def test_logging_trainable(self):
   with ops.Graph().as_default() as g, self.test_session(g):
     var = variables.Variable(constant_op.constant(42.0), name='foo')
     var.initializer.run()
     cof = constant_op.constant(1.0)
     loss = math_ops.subtract(
         math_ops.multiply(var, cof), constant_op.constant(1.0))
     train_step = gradient_descent.GradientDescentOptimizer(0.5).minimize(loss)
     ops.get_default_session().run(train_step)
     self._run_monitor(learn.monitors.LoggingTrainable('foo'))
     self.assertRegexpMatches(str(self.logged_message), var.name)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:11,代码来源:monitors_test.py

示例2: _to_numpy

def _to_numpy(a):
  """Converts tensors to numpy arrays.

  Converts Tensors and EagerTensors to numpy arrays.
  When eager execution is enabled, converts IndexedSlices
  to IndexedSlicesValue with numpy indices/values

  Args:
    a: any value.

  Returns:
    If a is EagerTensor or Tensor, returns the evaluation of a by calling
    numpy() or run().
    If a is IndexedSlices and eager execution is enabled, calls numpy() on a's
    fields. Otherwise returns a unchanged.
  """
  if isinstance(a, ops.EagerTensor):
    return a.numpy()
  if isinstance(a, ops.Tensor):
    sess = ops.get_default_session()
    return sess.run(a)
  if isinstance(a, ops.IndexedSlices) and context.executing_eagerly():
    return ops.IndexedSlicesValue(
        indices=[x.numpy() for x in a.indices],
        values=[x.numpy() for x in a.values],
        dense_shape=a.dense_shape)
  return a
开发者ID:aeverall,项目名称:tensorflow,代码行数:27,代码来源:gradient_checker_v2.py

示例3: _to_numpy

def _to_numpy(a):
  """Converts Tensors, EagerTensors, and IndexedSlicesValue to numpy arrays.

  Args:
    a: any value.

  Returns:
    If a is EagerTensor or Tensor, returns the evaluation of a by calling
    numpy() or run(). If a is IndexedSlicesValue, constructs the corresponding
    dense numpy array. Otherwise returns a unchanged.
  """
  if isinstance(a, ops.EagerTensor):
    return a.numpy()
  if isinstance(a, ops.Tensor):
    sess = ops.get_default_session()
    return sess.run(a)
  if isinstance(a, ops.IndexedSlicesValue):
    arr = np.zeros(a.dense_shape)
    assert len(a.values) == len(a.indices), (
        "IndexedSlicesValue has %s value slices but %s indices\n%s" %
        (a.values, a.indices, a))
    for values_slice, index in zip(a.values, a.indices):
      assert 0 <= index < len(arr), (
          "IndexedSlicesValue has invalid index %s\n%s" % (index, a))
      arr[index] += values_slice
    return arr
  return a
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:27,代码来源:gradient_checker_v2.py

示例4: start_queue_runners

def start_queue_runners(sess=None, coord=None, daemon=True, start=True,
                        collection=ops.GraphKeys.QUEUE_RUNNERS):
  """Starts all queue runners collected in the graph.

  This is a companion method to `add_queue_runner()`.  It just starts
  threads for all queue runners collected in the graph.  It returns
  the list of all threads.

  Args:
    sess: `Session` used to run the queue ops.  Defaults to the
      default session.
    coord: Optional `Coordinator` for coordinating the started threads.
    daemon: Whether the threads should be marked as `daemons`, meaning
      they don't block program exit.
    start: Set to `False` to only create the threads, not start them.
    collection: A `GraphKey` specifying the graph collection to
      get the queue runners from.  Defaults to `GraphKeys.QUEUE_RUNNERS`.

  Returns:
    A list of threads.
  """
  if sess is None:
    sess = ops.get_default_session()
    if not sess:
      raise ValueError("Cannot start queue runners: No default session is "
                       "registered. Use `with sess.as_default()` or pass an "
                       "explicit session to tf.start_queue_runners(sess=sess)")
  with sess.graph.as_default():
    threads = []
    for qr in ops.get_collection(collection):
      threads.extend(qr.create_threads(sess, coord=coord, daemon=daemon,
                                       start=start))
  return threads
开发者ID:KalraA,项目名称:tensorflow,代码行数:33,代码来源:queue_runner.py

示例5: _prepare

def _prepare(f, xs_dtypes):
  """Return a function that executes 'f'.

    In TF 2.x, this is the same as `f`.
    In TF 1.x, returns a Python function that executes the graph defined by `f`
    in a Session.

  Args:
    f: the function.
    xs_dtypes: dtypes of f's arguments.

  Returns:
    a function that will be evaluated in both graph and eager mode
  """
  if context.executing_eagerly():

    def decorated_eager(*xs_data):
      return f(*map(ops.convert_to_tensor, xs_data))

    return decorated_eager
  xs = [array_ops.placeholder(x_dtype) for x_dtype in xs_dtypes]
  y = f(*xs)
  sess = ops.get_default_session()
  def decorated_graph(*xs_data):
    xs_data = [_to_numpy(a) for a in xs_data]
    return sess.run(y, feed_dict=dict(zip(xs, xs_data)))
  return decorated_graph
开发者ID:terrytangyuan,项目名称:tensorflow,代码行数:27,代码来源:gradient_checker_v2.py

示例6: _operator_and_matrix

  def _operator_and_matrix(self, build_info, dtype, use_placeholder):
    sess = ops.get_default_session()
    shape = list(build_info.shape)

    # Either 1 or 2 matrices, depending.
    num_operators = rng.randint(low=1, high=3)
    matrices = [
        linear_operator_test_util.random_positive_definite_matrix(
            shape, dtype, force_well_conditioned=True)
        for _ in range(num_operators)
    ]

    lin_op_matrices = matrices

    if use_placeholder:
      lin_op_matrices = [
          array_ops.placeholder_with_default(
              matrix, shape=None) for matrix in matrices]

    operator = linalg.LinearOperatorComposition(
        [linalg.LinearOperatorFullMatrix(l) for l in lin_op_matrices],
        is_square=True)

    matmul_order_list = list(reversed(matrices))
    mat = matmul_order_list[0]
    for other_mat in matmul_order_list[1:]:
      mat = math_ops.matmul(other_mat, mat)

    return operator, mat
开发者ID:LongJun123456,项目名称:tensorflow,代码行数:29,代码来源:linear_operator_composition_test.py

示例7: run_restore_ops

 def run_restore_ops(self, session=None):
   """Load the name-based training checkpoint using a new `tf.train.Saver`."""
   if session is None and not context.executing_eagerly():
     session = ops.get_default_session()
   with ops.device("/cpu:0"):
     saver_lib.Saver(self._object_saver._global_variable_names()).restore(  # pylint: disable=protected-access
         sess=session, save_path=self._save_path)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:7,代码来源:checkpointable_utils.py

示例8: run_evaluation

  def run_evaluation(init_op, call_op, results_op, sess=None):
    """Convenience method for running the ops returned by evaluate_on_dataset.

    Args:
      init_op: An op that initializes/resets evaluation state.
      call_op: An op that updates evaluation state on a mini-batch of examples.
        Must generate an tf.errors.OutOfRangeError when done.
      results_op: A dictionary of tensors that compute the final evaluation
        results from the evaluation state.
      sess: The Session to run the evaluation in. Defaults to the default
        Session.

    Returns:
      A dictionary of values, parallel to results_op.

    Raises:
      RuntimeError: if eager execution is enabled.

    @compatibility(eager)
    Only for graph execution.
    @end_compatibility
    """
    if context.in_eager_mode():
      raise RuntimeError("Evaluator.run_evaluation() not supported when "
                         "eager execution is enabled.")
    sess = sess or ops.get_default_session()
    sess.run(init_op)
    try:
      while True:
        sess.run(call_op)
    except errors_impl.OutOfRangeError:
      pass
    return sess.run(results_op)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:33,代码来源:evaluator.py

示例9: save

  def save(self, file_prefix, session=None):
    """Save a training checkpoint.

    The saved checkpoint includes variables created by this object and any
    checkpointable objects it depends on at the time `Checkpoint.save()` is
    called.

    Args:
      file_prefix: A prefix to use for the checkpoint filenames
        (/path/to/directory/and_a_prefix). Names are generated based on this
        prefix and `Checkpoint.save_counter`.
      session: The session to evaluate variables in. Ignored when executing
        eagerly. If not provided when graph building, the default session is
        used.

    Returns:
      The full path to the checkpoint.
    """
    in_graph_mode = not context.executing_eagerly()
    if in_graph_mode:
      if session is None:
        session = ops.get_default_session()
      if self._save_counter is None:
        # When graph building, if this is a new save counter variable then it
        # needs to be initialized before assign_add. This is only an issue if
        # restore() has not been called first.
        session.run(self.save_counter.initializer)
    with ops.colocate_with(self.save_counter):
      assign_op = self.save_counter.assign_add(1)
    if in_graph_mode:
      session.run(assign_op)
    return self._saver.save(
        file_prefix=file_prefix,
        checkpoint_number=self.save_counter,
        session=session)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:35,代码来源:checkpointable_utils.py

示例10: applyOptimizer

  def applyOptimizer(self, opt, dtype, steps=5, is_sparse=False):
    if is_sparse:
      var0 = variables.Variable([[0.0], [0.0]], dtype=dtype)
      var1 = variables.Variable([[0.0], [0.0]], dtype=dtype)
      grads0 = ops.IndexedSlices(
          constant_op.constant([0.1], shape=[1, 1], dtype=dtype),
          constant_op.constant([0]), constant_op.constant([2, 1]))
      grads1 = ops.IndexedSlices(
          constant_op.constant([0.02], shape=[1, 1], dtype=dtype),
          constant_op.constant([1]), constant_op.constant([2, 1]))
    else:
      var0 = variables.Variable([0.0, 0.0], dtype=dtype)
      var1 = variables.Variable([0.0, 0.0], dtype=dtype)
      grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
      grads1 = constant_op.constant([0.01, 0.02], dtype=dtype)

    update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
    variables.global_variables_initializer().run()

    sess = ops.get_default_session()
    v0_val, v1_val = sess.run([var0, var1])
    if is_sparse:
      self.assertAllCloseAccordingToType([[0.0], [0.0]], v0_val)
      self.assertAllCloseAccordingToType([[0.0], [0.0]], v1_val)
    else:
      self.assertAllCloseAccordingToType([0.0, 0.0], v0_val)
      self.assertAllCloseAccordingToType([0.0, 0.0], v1_val)

    # Run Ftrl for a few steps
    for _ in range(steps):
      update.run()

    v0_val, v1_val = sess.run([var0, var1])
    return v0_val, v1_val
开发者ID:clsung,项目名称:tensorflow,代码行数:34,代码来源:ftrl_test.py

示例11: initialize

def initialize(
    graph=None,  # pylint: disable=redefined-outer-name
    session=None):
  """Initializes summary writing for graph execution mode.

  This helper method provides a higher-level alternative to using
  @{tf.contrib.summary.summary_writer_initializer_op} and
  @{tf.contrib.summary.graph}.

  Most users will also want to call @{tf.train.create_global_step}
  which can happen before or after this function is called.

  Args:
    graph: A @{tf.Graph} or @{tf.GraphDef} to output to the writer.
      This function will not write the default graph by default. When
      writing to an event log file, the associated step will be zero.
    session: So this method can call @{tf.Session.run}. This defaults
      to @{tf.get_default_session}.

  Raises:
    RuntimeError: If in eager mode, or if the current thread has no
      default @{tf.contrib.summary.SummaryWriter}.
    ValueError: If session wasn't passed and no default session.
  """
  if context.context().summary_writer_resource is None:
    raise RuntimeError("No default tf.contrib.summary.SummaryWriter found")
  if session is None:
    session = ops.get_default_session()
    if session is None:
      raise ValueError("session must be passed if no default session exists")
  session.run(summary_writer_initializer_op())
  if graph is not None:
    data = _serialize_graph(graph)
    x = array_ops.placeholder(dtypes.string)
    session.run(_graph(x, 0), feed_dict={x: data})
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:35,代码来源:summary_ops.py

示例12: initialize_or_restore

  def initialize_or_restore(self, session=None):
    """Run operations to initialize or restore objects in the dependency graph.

    Any objects in the dependency graph which have initializers but are not in
    the checkpoint will have those initializers run, unless those variables are
    being restored by a later call to `tf.train.Checkpoint.restore()`.

    This method has a sibling in `InitializationOnlyStatus` which instead
    initializes variables. That type is returned if no checkpoint is specified
    in `Saver.restore`.

    Args:
      session: The session to run init/restore ops in. If `None`, uses the
        default session.
    """
    if context.executing_eagerly():
      return  # Initialization and restoration ops are run eagerly
    if session is None:
      session = ops.get_default_session()
    all_objects = list_objects(self._root_checkpointable)
    already_initialized_objects = set(
        self._checkpoint.object_by_proto_id.values())
    initializers_for_non_restored_variables = [
        c.initializer for c in all_objects
        if hasattr(c, "initializer")
        and c not in already_initialized_objects
        and (getattr(c, "_update_uid", self._checkpoint.restore_uid - 1)
             < self._checkpoint.restore_uid)]
    self.run_restore_ops(session=session)
    session.run(initializers_for_non_restored_variables)
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:30,代码来源:checkpointable_utils.py

示例13: _run_monitor

 def _run_monitor(self,
                  monitor,
                  num_epochs=3,
                  num_steps_per_epoch=10,
                  pass_max_steps=True):
   if pass_max_steps:
     max_steps = num_epochs * num_steps_per_epoch - 1
   else:
     max_steps = None
   monitor.begin(max_steps=max_steps)
   for epoch in xrange(num_epochs):
     monitor.epoch_begin(epoch)
     should_stop = False
     step = epoch * num_steps_per_epoch
     next_epoch_step = step + num_steps_per_epoch
     while (not should_stop) and (step < next_epoch_step):
       tensors = monitor.step_begin(step)
       output = ops.get_default_session().run(tensors) if tensors else {}
       output = dict(
           zip([t.name if isinstance(t, ops.Tensor) else t for t in tensors],
               output))
       should_stop = monitor.step_end(step=step, output=output)
       monitor.post_step(step=step, session=None)
       step += 1
     monitor.epoch_end(epoch)
   monitor.end()
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:26,代码来源:monitors_test.py

示例14: assert_bijective_and_finite

def assert_bijective_and_finite(bijector, x, y, atol=0, rtol=1e-5, sess=None):
  """Assert that forward/inverse (along with jacobians) are inverses and finite.

  It is recommended to use x and y values that are very very close to the edge
  of the Bijector's domain.

  Args:
    bijector:  A Bijector instance.
    x:  np.array of values in the domain of bijector.forward.
    y:  np.array of values in the domain of bijector.inverse.
    atol:  Absolute tolerance.
    rtol:  Relative tolerance.
    sess:  TensorFlow session.  Defaults to the default session.

  Raises:
    AssertionError:  If tests fail.
  """
  sess = sess or ops.get_default_session()

  # These are the incoming points, but people often create a crazy range of
  # values for which these end up being bad, especially in 16bit.
  assert_finite(x)
  assert_finite(y)

  f_x = bijector.forward(x)
  g_y = bijector.inverse(y)

  [
      x_from_x,
      y_from_y,
      ildj_f_x,
      fldj_x,
      ildj_y,
      fldj_g_y,
      f_x_v,
      g_y_v,
  ] = sess.run([
      bijector.inverse(f_x),
      bijector.forward(g_y),
      bijector.inverse_log_det_jacobian(f_x),
      bijector.forward_log_det_jacobian(x),
      bijector.inverse_log_det_jacobian(y),
      bijector.forward_log_det_jacobian(g_y),
      f_x,
      g_y,
  ])

  assert_finite(x_from_x)
  assert_finite(y_from_y)
  assert_finite(ildj_f_x)
  assert_finite(fldj_x)
  assert_finite(ildj_y)
  assert_finite(fldj_g_y)
  assert_finite(f_x_v)
  assert_finite(g_y_v)

  np.testing.assert_allclose(x_from_x, x, atol=atol, rtol=rtol)
  np.testing.assert_allclose(y_from_y, y, atol=atol, rtol=rtol)
  np.testing.assert_allclose(-ildj_f_x, fldj_x, atol=atol, rtol=rtol)
  np.testing.assert_allclose(-ildj_y, fldj_g_y, atol=atol, rtol=rtol)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:60,代码来源:bijector_test_util.py

示例15: save

  def save(self, file_prefix, checkpoint_number=None, session=None):
    """Save a training checkpoint.

    The saved checkpoint includes variables created by this object and any
    Checkpointable objects it depends on at the time `Saver.save()` is called.

    Args:
      file_prefix: A prefix to use for the checkpoint filenames
        (/path/to/directory/and_a_prefix). Names are generated based on this
        prefix and `checkpoint_number`, if provided.
      checkpoint_number: An integer variable or Tensor, used to number
        checkpoints. Typically this value is saved along with other variables in
        training checkpoints, which will happen automatically if it was created
        by `root_checkpointable` or one of its dependencies (via
        `Checkpointable._add_variable`).
      session: The session to evaluate variables in. Ignored when executing
        eagerly. If not provided when graph building, the default session is
        used.

    Returns:
      The full path to the checkpoint.
    """
    named_variables, graph_proto = _serialize_object_graph(
        self._root_checkpointable)
    if not context.executing_eagerly():
      if session is None:
        session = ops.get_default_session()
      if self._object_graph_feed_tensor is None:
        with ops.device("/cpu:0"):
          self._object_graph_feed_tensor = constant_op.constant(
              "", dtype=dtypes.string)
      object_graph_tensor = self._object_graph_feed_tensor
      feed_additions = {object_graph_tensor: graph_proto.SerializeToString()}
    else:
      session = None
      with ops.device("/cpu:0"):
        object_graph_tensor = constant_op.constant(
            graph_proto.SerializeToString(), dtype=dtypes.string)
      feed_additions = None
    assert _OBJECT_GRAPH_PROTO_KEY not in named_variables
    named_variables[_OBJECT_GRAPH_PROTO_KEY] = _NoRestoreSaveable(
        tensor=object_graph_tensor,
        name=_OBJECT_GRAPH_PROTO_KEY)
    if self._last_save_object_graph != graph_proto:
      if self._last_save_object_graph is not None:
        self._last_save_saver = _copy_saver_with_new_var_list(
            old_saver=self._last_save_saver, new_var_list=named_variables)
      else:
        self._last_save_saver = saver_lib.Saver(var_list=named_variables)
      self._last_save_object_graph = graph_proto
    with ops.device("/cpu:0"):
      save_path = self._last_save_saver.save(
          sess=_SessionWithFeedDictAdditions(
              session=session, feed_additions=feed_additions),
          save_path=file_prefix,
          write_meta_graph=False,
          global_step=checkpoint_number)
    return save_path
开发者ID:houhaichao830,项目名称:tensorflow,代码行数:58,代码来源:checkpointable_utils.py


注:本文中的tensorflow.python.framework.ops.get_default_session函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。