本文整理汇总了Python中tensorflow.python.framework.ops.convert_to_tensor_or_indexed_slices函数的典型用法代码示例。如果您正苦于以下问题:Python convert_to_tensor_or_indexed_slices函数的具体用法?Python convert_to_tensor_or_indexed_slices怎么用?Python convert_to_tensor_or_indexed_slices使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了convert_to_tensor_or_indexed_slices函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update
def update(v, g):
"""Apply gradients to a replica variable."""
assert v is not None
try:
# Convert the grad to Tensor or IndexedSlices if necessary.
g = ops.convert_to_tensor_or_indexed_slices(g)
except TypeError:
raise TypeError("Gradient must be convertible to a Tensor"
" or IndexedSlices, or None: %s" % g)
if not isinstance(g, (ops.Tensor, ops.IndexedSlices)):
raise TypeError(
"Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
p = _get_processor(v)
if context.executing_eagerly() or (
resource_variable_ops.is_resource_variable(v) and
not v._in_graph_mode): # pylint: disable=protected-access
scope_name = v.name.split(":")[0]
else:
scope_name = v.op.name
# device_policy is set because non-mirrored tensors will be read in
# `update_op`. `_resource_apply_dense`, `lr_t`, `beta1_t` and `beta2_t`
# is an example.
with ops.name_scope("update_" + scope_name):
return p.update_op(self, g)
示例2: switch
def switch(data, pred, name=None):
"""Forwards `data` to an output determined by `pred`.
If `pred` is true, the `data` input is forwared to the first output.
Otherwise, the data goes to the second output.
This op handles `Tensor`s and `IndexedSlices`.
Args:
data: The tensor to be forwarded to the appropriate output.
pred: A scalar that specifies which output port will receive data.
name: A name for this operation (optional).
Returns:
`(output_true, output_false)`: If `pred` is true, data will be forwarded to
`output_true`, otherwise it goes to `output_false`.
"""
with ops.op_scope([data, pred], name, "Switch") as name:
data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
pred = ops.convert_to_tensor(pred, name="pred")
if isinstance(data, ops.Tensor):
return gen_control_flow_ops._switch(data, pred, name=name)
else:
val, ind, dense_shape = data.values, data.indices, data.dense_shape
val_f, val_t = gen_control_flow_ops._switch(val, pred, name=name)
ind_f, ind_t = gen_control_flow_ops._switch(ind, pred, name="indices")
if dense_shape:
dense_shape_f, dense_shape_t = gen_control_flow_ops._switch(
dense_shape, pred, name="dense_shape")
else:
dense_shape_f, dense_shape_t = None, None
return (ops.IndexedSlices(val_f, ind_f, dense_shape_f),
ops.IndexedSlices(val_t, ind_t, dense_shape_t))
示例3: _SwitchRefOrTensor
def _SwitchRefOrTensor(data, pred, name="Switch"):
"""Forwards `data` to an output determined by `pred`.
If `pred` is true, the `data` input is forwared to the first output.
Otherwise, the data goes to the second output.
This op handles `Tensor`s and `IndexedSlices`.
Args:
data: The tensor to be forwarded to the appropriate output.
pred: A scalar that specifies which output port will receive data.
name: A name for this operation (optional).
Returns:
`(output_false, output_false)`: If `pred` is true, data will be forwarded to
`output_true`, otherwise it goes to `output_false`.
Raises:
TypeError: if data is not a Tensor or IndexedSlices
"""
data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
if isinstance(data, ops.Tensor):
if not data.dtype.is_ref_dtype:
return switch(data, pred, name=name)
else:
return ref_switch(data, pred, name=name)
else:
return switch(data, pred, name=name)
示例4: with_dependencies
def with_dependencies(dependencies, output_tensor, name=None):
"""Produces the content of `output_tensor` only after `dependencies`.
In some cases, a user may want the output of an operation to be
consumed externally only after some other dependencies have run
first. This function ensures returns `output_tensor`, but only after all
operations in `dependencies` have run. Note that this means that there is
no guarantee that `output_tensor` will be evaluated after any `dependencies`
have run.
See also `tuple` and `group`.
Args:
dependencies: A list of operations to run before this op finishes.
output_tensor: A `Tensor` or `IndexedSlices` that will be returned.
name: (Optional) A name for this operation.
Returns:
Same as `output_tensor`.
Raises:
TypeError: if `output_tensor` is not a `Tensor` or `IndexedSlices`.
"""
with ops.op_scope(dependencies + [output_tensor], name,
"control_dependency") as name:
with ops.device(output_tensor.device
or ops.get_default_graph().get_default_device()):
with ops.control_dependencies(dependencies):
output_tensor = ops.convert_to_tensor_or_indexed_slices(output_tensor)
if isinstance(output_tensor, ops.Tensor):
return _Identity(output_tensor, name=name)
else:
return ops.IndexedSlices(_Identity(output_tensor.values, name=name),
output_tensor.indices,
output_tensor.dense_shape)
示例5: _AsTensorList
def _AsTensorList(x, p):
"""Return x as a list of Tensors or IndexedSlices.
For entries of `x` that are Operations, this returns an Identity of `p`
with a dependency on the operation.
Args:
x: A Tensor/IndexedSlices/Operation or a list or tuple of them.
p: A Tensor to return for entries in `x` that are Operations.
Returns:
A list of Tensors or IndexedSlices.
"""
if not isinstance(x, list) and not isinstance(x, _basetuple):
x = [x]
l = []
for v in x:
if isinstance(v, ops.Operation):
v = with_dependencies([v], p)
v = ops.convert_to_tensor_or_indexed_slices(v)
if isinstance(v, ops.Tensor):
l.append(array_ops.identity(v))
else:
l.append(ops.IndexedSlices(array_ops.identity(v.values),
array_ops.identity(v.indices)))
return l
示例6: merge
def merge(inputs, name=None):
"""Returns the value of an available element of `inputs`.
This op tests each of the tensors in `inputs` in turn to determine if any of
them is available. If it finds an available tensor, it returns it and its
index in `inputs`.
It is an error if more than one tensor in `inputs` is available. If no tensor
in `inputs` is available, the returned tensor and index are not set.
This op handles both `Tensor`s and `IndexedSlices`. If inputs has a mix of
`Tensor`s and `IndexedSlices`, all inputs are converted to IndexedSlices
before merging.
Args:
inputs: The input tensors, at most one of which is available.
name: A name for this operation (optional).
Returns:
A tuple containing the chosen input tensor and its index in `inputs`.
Raises:
ValueError: If inputs are IndexedSlices and some but not all have a
dense_shape property.
"""
with ops.op_scope(inputs, name, "Merge") as name:
inputs = [ops.convert_to_tensor_or_indexed_slices(inp) for inp in inputs]
if all([isinstance(inp, ops.Tensor) for inp in inputs]):
return gen_control_flow_ops._merge(inputs, name=name)
else:
inputs = math_ops._as_indexed_slices_list(inputs)
values, _ = gen_control_flow_ops._merge([inp.values for inp in inputs],
name=name)
indices, chosen_index = gen_control_flow_ops._merge(
[inp.indices for inp in inputs], name="indices")
if any(inp.dense_shape for inp in inputs):
if not all(inp.dense_shape for inp in inputs):
raise ValueError("Either all merged IndexedSlices must have a "
"dense_shape, or none must have a dense_shape.")
dense_shape, _ = gen_control_flow_ops._merge(
[inp.dense_shape for inp in inputs], name="dense_shape")
else:
dense_shape = None
return ops.IndexedSlices(values, indices, dense_shape), chosen_index
示例7: convert
def convert(x):
"""Converts a function output to a Tensor."""
if x is None:
return None
if op_return_value is not None and isinstance(x, ops.Operation):
# TODO(b/79881896): we currently can't capture external control deps, so
# this won't work if x needs to be captured (i.e. if python_func returns
# captured Operations).
with ops.control_dependencies([x]):
x = array_ops.identity(op_return_value)
elif not isinstance(x, tensor_array_ops.TensorArray):
try:
x = ops.convert_to_tensor_or_indexed_slices(x)
except (ValueError, TypeError):
raise TypeError(
"To be compatible with tf.contrib.eager.defun, Python functions "
"must return zero or more Tensors; in compilation of %s, found "
"return value of type %s, which is not a Tensor." %
(str(python_func), type(x)))
if add_control_dependencies:
x = a.mark_as_return(x)
return x
示例8: update
def update(v, g):
"""Apply gradients to a replica variable."""
assert v is not None
try:
# Convert the grad to Tensor or IndexedSlices if necessary.
g = ops.convert_to_tensor_or_indexed_slices(g)
except TypeError:
raise TypeError("Gradient must be convertible to a Tensor"
" or IndexedSlices, or None: %s" % g)
if not isinstance(g, (ops.Tensor, ops.IndexedSlices)):
raise TypeError(
"Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
p = _get_processor(v)
scope_name = "" if context.executing_eagerly() else v.op.name
# device_policy is set because non-mirrored tensors will be read in
# `update_op`. `_resource_apply_dense`, `lr_t`, `beta1_t` and `beta2_t`
# is an example.
with ops.name_scope(
"update_" + scope_name), context.context().device_policy(
context.DEVICE_PLACEMENT_SILENT):
return p.update_op(self, g)
示例9: apply_gradients
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""Apply gradients to variables.
This is the second part of `minimize()`. It returns an `Operation` that
applies gradients.
Args:
grads_and_vars: List of (gradient, variable) pairs as returned by
`compute_gradients()`.
global_step: Optional `Variable` to increment by one after the
variables have been updated.
name: Optional name for the returned operation. Default to the
name passed to the `Optimizer` constructor.
Returns:
An `Operation` that applies the specified gradients. If `global_step`
was not None, that operation also increments `global_step`.
Raises:
TypeError: If `grads_and_vars` is malformed.
ValueError: If none of the variables have gradients.
RuntimeError: If you should use `_distributed_apply()` instead.
"""
# This is a default implementation of apply_gradients() that can be shared
# by most optimizers. It relies on the subclass implementing the following
# methods: _create_slots(), _prepare(), _apply_dense(), and _apply_sparse().
# TODO(isaprykin): Get rid of `has_strategy()` check by
# always calling _distributed_apply(), using the default distribution
# as needed.
if distribute_ctx.has_strategy():
# Handle DistributionStrategy case.
if distribute_ctx.in_cross_replica_context():
raise RuntimeError("Use `_distributed_apply()` instead of "
"`apply_gradients()` in a cross-replica context.")
grads_and_vars = get_filtered_grad_fn(lambda: grads_and_vars)()
return distribute_ctx.get_replica_context().merge_call(
self._distributed_apply, args=(grads_and_vars, global_step, name))
# No DistributionStrategy case.
grads_and_vars = tuple(grads_and_vars) # Make sure repeat iteration works.
if not grads_and_vars:
raise ValueError("No variables provided.")
converted_grads_and_vars = []
for g, v in grads_and_vars:
if g is not None:
try:
# Convert the grad to Tensor or IndexedSlices if necessary.
g = ops.convert_to_tensor_or_indexed_slices(g)
except TypeError:
raise TypeError(
"Gradient must be convertible to a Tensor"
" or IndexedSlices, or None: %s" % g)
if not isinstance(g, (ops.Tensor, ops.IndexedSlices)):
raise TypeError(
"Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
p = _get_processor(v)
converted_grads_and_vars.append((g, v, p))
converted_grads_and_vars = tuple(converted_grads_and_vars)
var_list = [v for g, v, _ in converted_grads_and_vars if g is not None]
if not var_list:
raise ValueError("No gradients provided for any variable: %s." %
([str(v) for _, v, _ in converted_grads_and_vars],))
with ops.init_scope():
self._create_slots(var_list)
update_ops = []
with ops.name_scope(name, self._name) as name:
self._prepare()
for grad, var, processor in converted_grads_and_vars:
if grad is None:
continue
# We colocate all ops created in _apply_dense or _apply_sparse
# on the same device as the variable.
# TODO(apassos): figure out how to get the variable name here.
if context.executing_eagerly() or isinstance(
var,
resource_variable_ops.ResourceVariable) and not var._in_graph_mode: # pylint: disable=protected-access
scope_name = ""
else:
scope_name = var.op.name
with ops.name_scope("update_" + scope_name), ops.colocate_with(var):
update_ops.append(processor.update_op(self, grad))
if global_step is None:
apply_updates = self._finish(update_ops, name)
else:
with ops.control_dependencies([self._finish(update_ops, "update")]):
with ops.colocate_with(global_step):
if isinstance(global_step, resource_variable_ops.ResourceVariable):
# TODO(apassos): the implicit read in assign_add is slow; consider
# making it less so.
apply_updates = resource_variable_ops.assign_add_variable_op(
global_step.handle,
ops.convert_to_tensor(1, dtype=global_step.dtype),
name=name)
else:
apply_updates = state_ops.assign_add(global_step, 1, name=name)
if not context.executing_eagerly():
#.........这里部分代码省略.........
示例10: convert
def convert(x):
if x is None:
return None
x = ops.convert_to_tensor_or_indexed_slices(x)
x = a.mark_as_return(x)
return x
示例11: apply_gradients
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""Apply gradients to variables.
This is the second part of `minimize()`. It returns an `Operation` that
applies gradients.
Args:
grads_and_vars: List of (gradient, variable) pairs as returned by
`compute_gradients()`.
global_step: Optional `Variable` to increment by one after the
variables have been updated.
name: Optional name for the returned operation. Default to the
name passed to the `Optimizer` constructor.
Returns:
An `Operation` that applies the specified gradients. If `global_step`
was not None, that operation also increments `global_step`.
Raises:
TypeError: If `grads_and_vars` is malformed.
ValueError: If none of the variables have gradients.
"""
# This is a default implementation of apply_gradients() that can be shared
# by most optimizers. It relies on the subclass implementing the following
# methods: _create_slots(), _prepare(), _apply_dense(), and _apply_sparse().
grads_and_vars = tuple(grads_and_vars) # Make sure repeat iteration works
converted_grads_and_vars = []
for g, v in grads_and_vars:
if g is not None:
try:
# Convert the grad to Tensor or IndexedSlices if necessary
g = ops.convert_to_tensor_or_indexed_slices(g)
except TypeError:
raise TypeError("Gradient must be convertible to a Tensor or IndexedSlices, or None: %s" % g)
if not isinstance(g, (ops.Tensor, ops.IndexedSlices, type(None))):
raise TypeError("Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
if not isinstance(v, variables.Variable):
raise TypeError("Variable must be a tf.Variable: %s" % v)
converted_grads_and_vars.append((g, v))
converted_grads_and_vars = tuple(converted_grads_and_vars)
var_list = [v for g, v in converted_grads_and_vars if g is not None]
if not var_list:
raise ValueError("No gradients provided for any variable: %s" % (converted_grads_and_vars,))
with ops.control_dependencies(None):
self._create_slots(var_list)
update_ops = []
with ops.name_scope(name, self._name) as name:
self._prepare()
for grad, var in converted_grads_and_vars:
if grad is None:
continue
# We colocate all ops created in _apply_dense or _apply_sparse
# on the same device as the variable.
with ops.name_scope("update_" + var.op.name), ops.colocate_with(var):
if isinstance(grad, ops.Tensor):
update_ops.append(self._apply_dense(grad, var))
else:
update_ops.append(self._apply_sparse(grad, var))
if global_step is None:
return self._finish(update_ops, name)
else:
with ops.control_dependencies([self._finish(update_ops, "update")]):
with ops.colocate_with(global_step):
return state_ops.assign_add(global_step, 1, name=name).op
示例12: apply_gradients
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""Apply gradients to variables.
This is the second part of `minimize()`. It returns an `Operation` that
applies gradients.
Args:
grads_and_vars: List of (gradient, variable) pairs as returned by
`compute_gradients()`.
global_step: Optional `Variable` to increment by one after the
variables have been updated.
name: Optional name for the returned operation. Default to the
name passed to the `Optimizer` constructor.
Returns:
An `Operation` that applies the specified gradients. If `global_step`
was not None, that operation also increments `global_step`.
Raises:
TypeError: If `grads_and_vars` is malformed.
ValueError: If none of the variables have gradients.
"""
# This is a default implementation of apply_gradients() that can be shared
# by most optimizers. It relies on the subclass implementing the following
# methods: _create_slots(), _prepare(), _apply_dense(), and _apply_sparse().
grads_and_vars = tuple(grads_and_vars) # Make sure repeat iteration works.
if not grads_and_vars:
raise ValueError("No variables provided.")
converted_grads_and_vars = []
for g, v in grads_and_vars:
if g is not None:
try:
# Convert the grad to Tensor or IndexedSlices if necessary.
g = ops.convert_to_tensor_or_indexed_slices(g)
except TypeError:
raise TypeError(
"Gradient must be convertible to a Tensor"
" or IndexedSlices, or None: %s" % g)
if not isinstance(g, (ops.Tensor, ops.IndexedSlices)):
raise TypeError(
"Gradient must be a Tensor, IndexedSlices, or None: %s" % g)
p = _get_processor(v)
converted_grads_and_vars.append((g, v, p))
converted_grads_and_vars = tuple(converted_grads_and_vars)
var_list = [v for g, v, _ in converted_grads_and_vars if g is not None]
if not var_list:
raise ValueError("No gradients provided for any variable: %s." %
([str(v) for _, _, v in converted_grads_and_vars],))
with ops.control_dependencies(None):
self._create_slots([_get_variable_for(v) for v in var_list])
update_ops = []
with ops.name_scope(name, self._name) as name:
self._prepare()
for grad, var, processor in converted_grads_and_vars:
if grad is None:
continue
# We colocate all ops created in _apply_dense or _apply_sparse
# on the same device as the variable.
# TODO(apassos): figure out how to get the variable name here.
scope_name = var.op.name if context.in_graph_mode() else ""
with ops.name_scope("update_" + scope_name), ops.colocate_with(var):
update_ops.append(processor.update_op(self, grad))
if global_step is None:
apply_updates = self._finish(update_ops, name)
else:
with ops.control_dependencies([self._finish(update_ops, "update")]):
with ops.colocate_with(global_step):
apply_updates = state_ops.assign_add(global_step, 1, name=name).op
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
if apply_updates not in train_op:
train_op.append(apply_updates)
return apply_updates
示例13: convert
def convert(x):
if x is None:
return None
return ops.convert_to_tensor_or_indexed_slices(x)
示例14: input_layer_with_layer_annotations
def input_layer_with_layer_annotations(features,
feature_columns,
weight_collections=None,
trainable=True,
cols_to_vars=None,
scope=None,
cols_to_output_tensors=None,
from_template=False):
"""Returns a dense `Tensor` as input layer based on given `feature_columns`.
Generally a single example in training data is described with
FeatureColumns.
At the first layer of the model, this column oriented data should be
converted
to a single `Tensor`.
This is like tf.feature_column.input_layer, except with added
Integrated-Gradient annotations.
Args:
features: A mapping from key to tensors. `_FeatureColumn`s look up via
these keys. For example `numeric_column('price')` will look at 'price'
key in this dict. Values can be a `SparseTensor` or a `Tensor` depends
on corresponding `_FeatureColumn`.
feature_columns: An iterable containing the FeatureColumns to use as
inputs to your model. All items should be instances of classes derived
from `_DenseColumn` such as `numeric_column`, `embedding_column`,
`bucketized_column`, `indicator_column`. If you have categorical
features, you can wrap them with an `embedding_column` or
`indicator_column`.
weight_collections: A list of collection names to which the Variable will
be added. Note that variables will also be added to collections
`tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`.
trainable: If `True` also add the variable to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).
cols_to_vars: If not `None`, must be a dictionary that will be filled with
a mapping from `_FeatureColumn` to list of `Variable`s. For example,
after the call, we might have cols_to_vars = {_EmbeddingColumn(
categorical_column=_HashedCategoricalColumn( key='sparse_feature',
hash_bucket_size=5, dtype=tf.string), dimension=10): [<tf.Variable
'some_variable:0' shape=(5, 10), <tf.Variable 'some_variable:1'
shape=(5, 10)]} If a column creates no variables, its value will be an
empty list.
scope: A name or variable scope to use
cols_to_output_tensors: If not `None`, must be a dictionary that will be
filled with a mapping from '_FeatureColumn' to the associated output
`Tensor`s.
from_template: True if the method is being instantiated from a
`make_template`.
Returns:
A `Tensor` which represents input layer of a model. Its shape
is (batch_size, first_layer_dimension) and its dtype is `float32`.
first_layer_dimension is determined based on given `feature_columns`.
Raises:
ValueError: features and feature_columns have different lengths.
"""
local_cols_to_output_tensors = {}
input_layer = original_input_layer(
features=features,
feature_columns=feature_columns,
weight_collections=weight_collections,
trainable=trainable,
cols_to_vars=cols_to_vars,
scope=scope,
cols_to_output_tensors=local_cols_to_output_tensors,
from_template=from_template)
if cols_to_output_tensors is not None:
cols_to_output_tensors = local_cols_to_output_tensors
# Annotate features.
# These are the parsed Tensors, before embedding.
# Only annotate features used by FeatureColumns.
# We figure which ones are used by FeatureColumns by creating a parsing
# spec and looking at the keys.
spec = feature_column_lib.make_parse_example_spec(feature_columns)
for key in spec.keys():
tensor = ops.convert_to_tensor_or_indexed_slices(features[key])
ops.add_to_collection(
LayerAnnotationsCollectionNames.keys(
LayerAnnotationsCollectionNames.UNPROCESSED_FEATURES), key)
ops.add_to_collection(
LayerAnnotationsCollectionNames.values(
LayerAnnotationsCollectionNames.UNPROCESSED_FEATURES),
_to_any_wrapped_tensor_info(tensor))
# Annotate feature columns.
for column in feature_columns:
# TODO(cyfoo): Find a better way to serialize and deserialize
# _FeatureColumn.
ops.add_to_collection(LayerAnnotationsCollectionNames.FEATURE_COLUMNS,
serialize_feature_column(column))
for column, tensor in local_cols_to_output_tensors.items():
ops.add_to_collection(
LayerAnnotationsCollectionNames.keys(
#.........这里部分代码省略.........