本文整理汇总了Python中tensorflow.python.framework.errors.raise_exception_on_not_ok_status函数的典型用法代码示例。如果您正苦于以下问题:Python raise_exception_on_not_ok_status函数的具体用法?Python raise_exception_on_not_ok_status怎么用?Python raise_exception_on_not_ok_status使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了raise_exception_on_not_ok_status函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: tf_record_iterator
def tf_record_iterator(path, options=None):
"""An iterator that read the records from a TFRecords file.
Args:
path: The path to the TFRecords file.
options: (optional) A TFRecordOptions object.
Yields:
Strings.
Raises:
IOError: If `path` cannot be opened for reading.
"""
compression_type = TFRecordOptions.get_compression_type_string(options)
with errors.raise_exception_on_not_ok_status() as status:
reader = pywrap_tensorflow.PyRecordReader_New(
compat.as_bytes(path), 0, compat.as_bytes(compression_type), status)
if reader is None:
raise IOError("Could not open %s." % path)
while True:
try:
with errors.raise_exception_on_not_ok_status() as status:
reader.GetNext(status)
except errors.OutOfRangeError:
break
yield reader.record()
reader.Close()
示例2: _initialize_handle_and_devices
def _initialize_handle_and_devices(self):
"""Initialize handle and devices."""
with self._initialize_lock:
if self._context_handle is not None:
return
assert self._context_devices is None
opts = pywrap_tensorflow.TF_NewSessionOptions(
target=compat.as_bytes(""), config=self._config)
with errors.raise_exception_on_not_ok_status() as status:
self._context_handle = pywrap_tensorflow.TFE_NewContext(opts, status)
pywrap_tensorflow.TF_DeleteSessionOptions(opts)
# Store list of devices
self._context_devices = []
with errors.raise_exception_on_not_ok_status() as status:
device_list = pywrap_tensorflow.TFE_ContextListDevices(
self._context_handle, status)
try:
self._num_gpus = 0
for i in range(pywrap_tensorflow.TF_DeviceListCount(device_list)):
with errors.raise_exception_on_not_ok_status() as status:
dev_name = pywrap_tensorflow.TF_DeviceListName(
device_list, i, status)
self._context_devices.append(pydev.canonical_name(dev_name))
with errors.raise_exception_on_not_ok_status() as status:
dev_type = pywrap_tensorflow.TF_DeviceListType(
device_list, i, status)
if dev_type == "GPU":
self._num_gpus += 1
finally:
pywrap_tensorflow.TF_DeleteDeviceList(device_list)
示例3: get_matching_files_v2
def get_matching_files_v2(pattern):
"""Returns a list of files that match the given pattern(s).
Args:
pattern: string or iterable of strings. The glob pattern(s).
Returns:
A list of strings containing filenames that match the given pattern(s).
Raises:
errors.OpError: If there are filesystem / directory listing errors.
"""
with errors.raise_exception_on_not_ok_status() as status:
if isinstance(pattern, six.string_types):
return [
# Convert the filenames to string from bytes.
compat.as_str_any(matching_filename)
for matching_filename in pywrap_tensorflow.GetMatchingFiles(
compat.as_bytes(pattern), status)
]
else:
return [
# Convert the filenames to string from bytes.
compat.as_str_any(matching_filename)
for single_filename in pattern
for matching_filename in pywrap_tensorflow.GetMatchingFiles(
compat.as_bytes(single_filename), status)
]
示例4: list_directory
def list_directory(dirname):
"""Returns a list of entries contained within a directory.
The list is in arbitrary order. It does not contain the special entries "."
and "..".
Args:
dirname: string, path to a directory
Returns:
[filename1, filename2, ... filenameN] as strings
Raises:
errors.NotFoundError if directory doesn't exist
"""
if not is_directory(dirname):
raise errors.NotFoundError(None, None, "Could not find directory")
with errors.raise_exception_on_not_ok_status() as status:
# Convert each element to string, since the return values of the
# vector of string should be interpreted as strings, not bytes.
return [
compat.as_str_any(filename)
for filename in pywrap_tensorflow.GetChildren(
compat.as_bytes(dirname), status)
]
示例5: recursive_create_dir
def recursive_create_dir(dirname):
with errors.raise_exception_on_not_ok_status() as status:
dirs = dirname.split('/')
for i in range(len(dirs)):
partial_dir = '/'.join(dirs[0:i+1])
if partial_dir and not file_exists(partial_dir):
pywrap_tensorflow.CreateDir(compat.as_bytes(partial_dir), status)
示例6: call_cpp_shape_fn
def call_cpp_shape_fn(op):
"""A shape function that delegates to the registered C++ shape function.
Args:
op: the node in the graph for which to compute output shapes.
Returns:
A TensorShape list of the output shapes of the op, as computed using the
C++ shape inference function registered for the op.
Raises:
ValueError: If the C++ shape function returned an error (e.g. because the
shapes of the inputs are of the wrong rank or otherwise incompatible
according to the shape function).
"""
node_def_str = op.node_def.SerializeToString()
input_shapes = [i.get_shape().as_proto().SerializeToString() for i in
op.inputs]
try:
with errors.raise_exception_on_not_ok_status() as status:
output_shapes = pywrap_tensorflow.RunCppShapeInference(
node_def_str, input_shapes, status)
except errors.InvalidArgumentError as err:
raise ValueError(err.message)
# Convert TensorShapeProto values in output_shapes.
return [
tensor_shape.TensorShape(tensor_shape_pb2.TensorShapeProto.FromString(s))
for s in output_shapes
]
示例7: smart_constant_value
def smart_constant_value(pred):
"""Return the bool value for `pred`, or None if `pred` had a dynamic value.
Arguments:
pred: A scalar, either a Python bool or tensor.
Returns:
True or False if `pred` has a constant boolean value, None otherwise.
Raises:
TypeError: If `pred` is not a Tensor or bool.
"""
if pred in {0, 1}: # Accept 1/0 as valid boolean values
pred_value = bool(pred)
elif isinstance(pred, bool):
pred_value = pred
elif isinstance(pred, ops.Tensor):
pred_value = tensor_util.constant_value(pred)
# TODO(skyewm): consider folding this into tensor_util.constant_value when
# _USE_C_API is removed (there may be performance and correctness bugs, so I
# wanted to limit the change hidden behind _USE_C_API).
# pylint: disable=protected-access
if pred_value is None and ops._USE_C_API:
with errors.raise_exception_on_not_ok_status() as status:
pred_value = c_api.TF_TryEvaluateConstant_wrapper(
pred.graph._c_graph, pred._as_tf_output(), status)
# pylint: enable=protected-access
else:
raise TypeError("`pred` must be a Tensor, or a Python bool, or 1 or 0. "
"Found instead: %s" % pred)
return pred_value
示例8: capture_value
def capture_value(tensor_map, value, dtype, name):
"""Capture a value from outside the function, to pass in as an extra arg."""
captured_value = tensor_map.get(ops.tensor_id(value), None)
if captured_value is None:
captured_value = graph_placeholder(
dtype=dtype or value.dtype, shape=value.shape, name=name)
if captured_value.dtype == dtypes_module.resource:
handle_data = value._handle_data # pylint: disable=protected-access
captured_value._handle_data = handle_data # pylint: disable=protected-access
if handle_data is not None and handle_data.is_set:
# Ensure that shapes and dtypes are propagated.
shapes, types = zip(*[(pair.shape, pair.dtype)
for pair in handle_data.shape_and_type])
ranks = [len(s.dim) if not s.unknown_rank else -1 for s in shapes]
shapes = [[d.size for d in s.dim]
if not s.unknown_rank else None for s in shapes]
with errors.raise_exception_on_not_ok_status() as status:
pywrap_tensorflow.TF_GraphSetOutputHandleShapesAndTypes_wrapper(
captured_value._op._graph._c_graph, # pylint: disable=protected-access
captured_value._as_tf_output(), # pylint: disable=protected-access
shapes,
ranks,
types,
status)
tensor_map[ops.tensor_id(value)] = (value, captured_value)
else:
captured_value = captured_value[1]
tape.record_operation("captured_value", [captured_value], [value],
lambda x: [x])
return captured_value
示例9: __init__
def __init__(self,
allow_soft_placement=True,
disable_detailed_stats=True,
disable_timeline=True,
devices=None):
"""Creates a Cluster.
Args:
allow_soft_placement: If True, TF will automatically fix illegal
placements instead of erroring out if the placement isn't legal.
disable_detailed_stats: If True, detailed statistics will not be
available.
disable_timeline: If True, the timeline information will not be reported.
devices: A list of devices of type device_properties_pb2.NamedDevice.
If None, a device list will be created based on the spec of
the local machine.
"""
self._tf_cluster = None
self._generate_timeline = not disable_timeline
with errors.raise_exception_on_not_ok_status() as status:
if devices is None:
self._tf_cluster = tf_cluster.TF_NewCluster(
allow_soft_placement, disable_detailed_stats, status)
else:
devices_serialized = [device.SerializeToString() for device in devices]
self._tf_cluster = tf_cluster.TF_NewVirtualCluster(
devices_serialized, status)
示例10: TransformGraph
def TransformGraph(input_graph_def, inputs, outputs, transforms):
"""Python wrapper for the Graph Transform Tool.
Gives access to all graph transforms available through the command line tool.
See documentation at https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md
for full details of the options available.
Args:
input_graph_def: GraphDef object containing a model to be transformed.
inputs: List of node names for the model inputs.
outputs: List of node names for the model outputs.
transforms: List of strings containing transform names and parameters.
Returns:
New GraphDef with transforms applied.
"""
input_graph_def_string = input_graph_def.SerializeToString()
inputs_string = compat.as_bytes(",".join(inputs))
outputs_string = compat.as_bytes(",".join(outputs))
transforms_string = compat.as_bytes(" ".join(transforms))
with errors.raise_exception_on_not_ok_status() as status:
output_graph_def_string = TransformGraphWithStringInputs(
input_graph_def_string, inputs_string, outputs_string,
transforms_string, status)
output_graph_def = graph_pb2.GraphDef()
output_graph_def.ParseFromString(output_graph_def_string)
return output_graph_def
示例11: __init__
def __init__(self, server_or_cluster_def, job_name=None, task_index=None, protocol=None, config=None, start=True):
"""Creates a new server with the given definition.
The `job_name`, `task_index`, and `protocol` arguments are optional, and
override any information provided in `server_or_cluster_def`.
Args:
server_or_cluster_def: A `tf.train.ServerDef` or
`tf.train.ClusterDef` protocol buffer, or a
`tf.train.ClusterSpec` object, describing the server to be
created and/or the cluster of which it is a member.
job_name: (Optional.) Specifies the name of the job of which the server
is a member. Defaults to the value in `server_or_cluster_def`, if
specified.
task_index: (Optional.) Specifies the task index of the server in its
job. Defaults to the value in `server_or_cluster_def`, if specified.
Otherwise defaults to 0 if the server's job has only one task.
protocol: (Optional.) Specifies the protocol to be used by the server.
Acceptable values include `"grpc"`. Defaults to the value in
`server_or_cluster_def`, if specified. Otherwise defaults to `"grpc"`.
config: (Options.) A `tf.ConfigProto` that specifies default
configuration options for all sessions that run on this server.
start: (Optional.) Boolean, indicating whether to start the server
after creating it. Defaults to `True`.
Raises:
tf.errors.OpError: Or one of its subclasses if an error occurs while
creating the TensorFlow server.
"""
self._server_def = _make_server_def(server_or_cluster_def, job_name, task_index, protocol, config)
with errors.raise_exception_on_not_ok_status() as status:
self._server = pywrap_tensorflow.PyServer_New(self._server_def.SerializeToString(), status)
if start:
self.start()
示例12: GenerateCostReport
def GenerateCostReport(metagraph,
per_node_report=False,
verbose=False,
cluster=None):
"""Analyze the cost of each TensorFlow op and node in the provided metagraph.
Args:
metagraph: A TensorFlow MetaGraphDef.
per_node_report: by default the report contains stats aggregated on a per op
type basis, setting per_node_report to True adds results for each
individual node to the report.
verbose: Prints out the entire operation proto instead of a summary table.
cluster: Analyze the costs using the specified cluster, or the local machine
if no cluster was specified.
Returns:
A string of cost report.
"""
if cluster is None:
cluster = gcluster.Cluster(disable_detailed_stats=False)
with errors.raise_exception_on_not_ok_status():
ret_from_swig = tf_wrap.GenerateCostReport(metagraph.SerializeToString(),
per_node_report, verbose,
cluster.tf_cluster)
return ret_from_swig
示例13: register_function_def
def register_function_def(fdef):
fdef_string = fdef.SerializeToString()
with errors.raise_exception_on_not_ok_status() as status:
pywrap_tensorflow.TFE_ContextAddFunctionDef(
context.get_default_context()._handle, # pylint: disable=protected-access
fdef_string,
len(fdef_string),
status)
示例14: write
def write(self, record):
"""Write a string record to the file.
Args:
record: str
"""
with errors.raise_exception_on_not_ok_status() as status:
self._writer.WriteRecord(record, status)
示例15: write
def write(self, file_content):
"""Writes file_content to the file."""
if not self._write_check_passed:
raise errors.PermissionDeniedError(None, None,
"File isn't open for writing")
with errors.raise_exception_on_not_ok_status() as status:
pywrap_tensorflow.WriteStringToFile(
compat.as_bytes(self.__name), compat.as_bytes(file_content), status)