当前位置: 首页>>代码示例>>Python>>正文


Python dtypes.as_dtype函数代码示例

本文整理汇总了Python中tensorflow.python.framework.dtypes.as_dtype函数的典型用法代码示例。如果您正苦于以下问题:Python as_dtype函数的具体用法?Python as_dtype怎么用?Python as_dtype使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了as_dtype函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _compute_gradient

def _compute_gradient(x,
                      x_shape,
                      dx,
                      y,
                      y_shape,
                      dy,
                      x_init_value=None,
                      delta=1e-3):
  """Computes the theoretical and numerical jacobian."""
  t = dtypes.as_dtype(x.dtype)
  allowed_types = [dtypes.float32, dtypes.float64, dtypes.complex64]
  assert t.base_dtype in allowed_types, "Don't support type %s for x" % t.name
  t2 = dtypes.as_dtype(y.dtype)
  assert t2.base_dtype in allowed_types, "Don't support type %s for y" % t2.name

  if x_init_value is not None:
    i_shape = list(x_init_value.shape)
    assert(list(x_shape) == i_shape), "x_shape = %s, init_data shape = %s" % (
        x_shape, i_shape)
    x_data = x_init_value
  else:
    if t == dtypes.float32:
      dtype = np.float32
    else:
      dtype = np.float64
    x_data = np.asfarray(np.random.random_sample(x_shape), dtype=dtype)

  jacob_t = _compute_theoretical_jacobian(x, x_shape, x_data, dy, y_shape, dx)
  jacob_n = _compute_numeric_jacobian(x, x_shape, x_data, y, y_shape, delta)
  return jacob_t, jacob_n
开发者ID:13683116633,项目名称:tensorflow,代码行数:30,代码来源:gradient_checker.py

示例2: _compute_gradient

def _compute_gradient(x,
                      x_shape,
                      dx,
                      y,
                      y_shape,
                      dy,
                      x_init_value=None,
                      delta=1e-3,
                      extra_feed_dict=None):
  """Computes the theoretical and numerical jacobian."""
  t = dtypes.as_dtype(x.dtype)
  allowed_types = [dtypes.float16, dtypes.bfloat16, dtypes.float32,
                   dtypes.float64, dtypes.complex64, dtypes.complex128]
  assert t.base_dtype in allowed_types, "Don't support type %s for x" % t.name
  t2 = dtypes.as_dtype(y.dtype)
  assert t2.base_dtype in allowed_types, "Don't support type %s for y" % t2.name

  if x_init_value is not None:
    i_shape = list(x_init_value.shape)
    assert(list(x_shape) == i_shape), "x_shape = %s, init_data shape = %s" % (
        x_shape, i_shape)
    x_data = x_init_value
  else:
    x_data = np.random.random_sample(x_shape).astype(t.as_numpy_dtype)
    if t.is_complex:
      x_data.imag = np.random.random_sample(x_shape)

  jacob_t = _compute_theoretical_jacobian(
      x, x_shape, x_data, dy, y_shape, dx, extra_feed_dict=extra_feed_dict)
  jacob_n = _compute_numeric_jacobian(
      x, x_shape, x_data, y, y_shape, delta, extra_feed_dict=extra_feed_dict)
  return jacob_t, jacob_n
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:32,代码来源:gradient_checker.py

示例3: _verifySolve

 def _verifySolve(self, x, y, batch_dims=None):
   for np_type in [np.float32, np.float64, np.complex64, np.complex128]:
     if np_type == np.float32 or np_type == np.complex64:
       tol = 1e-5
     else:
       tol = 1e-12
     for adjoint in False, True:
       if np_type is [np.float32, np.float64]:
         a = x.real().astype(np_type)
         b = y.real().astype(np_type)
       else:
         a = x.astype(np_type)
         b = y.astype(np_type)
         a_np = np.conj(np.transpose(a)) if adjoint else a
       if batch_dims is not None:
         a = np.tile(a, batch_dims + [1, 1])
         a_np = np.tile(a_np, batch_dims + [1, 1])
         b = np.tile(b, batch_dims + [1, 1])
       np_ans = np.linalg.solve(a_np, b)
       for use_placeholder in False, True:
         with self.test_session(use_gpu=True) as sess:
           if use_placeholder:
             a_ph = array_ops.placeholder(dtypes.as_dtype(np_type))
             b_ph = array_ops.placeholder(dtypes.as_dtype(np_type))
             tf_ans = linalg_ops.matrix_solve(a_ph, b_ph, adjoint=adjoint)
             out = sess.run(tf_ans, {a_ph: a, b_ph: b})
           else:
             tf_ans = linalg_ops.matrix_solve(a, b, adjoint=adjoint)
             out = tf_ans.eval()
             self.assertEqual(tf_ans.get_shape(), out.shape)
           self.assertEqual(np_ans.shape, out.shape)
           self.assertAllClose(np_ans, out, atol=tol, rtol=tol)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:32,代码来源:matrix_solve_op_test.py

示例4: testUnsortedSegmentOps1DIndices1DDataNegativeIndices

  def testUnsortedSegmentOps1DIndices1DDataNegativeIndices(self):
    """Tests for min, max, and prod ops.

    These share most of their implementation with sum, so we only test basic
    functionality.
    """
    for dtype in self.numeric_types:
      self.assertAllClose(
          np.array([8, 3, 1, 0], dtype=dtype),
          self._unsortedSegmentProd(
              np.array([0, 1, 2, 3, 4, 5, 6], dtype=dtype),
              np.array([3, -1, 0, 1, 0, -1, 3], dtype=np.int32), 4))

    for dtype in self.int_types | self.float_types:
      minval = dtypes.as_dtype(dtype).min
      maxval = dtypes.as_dtype(dtype).max

      self.assertAllClose(
          np.array([2, 3, maxval, 0], dtype=dtype),
          self._unsortedSegmentMin(
              np.array([0, 1, 2, 3, 4, 5, 6], dtype=dtype),
              np.array([3, -1, 0, 1, 0, -1, 3], dtype=np.int32), 4))
      self.assertAllClose(
          np.array([4, 3, minval, 6], dtype=dtype),
          self._unsortedSegmentMax(
              np.array([0, 1, 2, 3, 4, 5, 6], dtype=dtype),
              np.array([3, -1, 0, 1, 0, -1, 3], dtype=np.int32), 4))
开发者ID:Ajaycs99,项目名称:tensorflow,代码行数:27,代码来源:segment_reduction_ops_test.py

示例5: remote_fused_graph_execute

def remote_fused_graph_execute(inputs,
                               output_types,
                               graph_def,
                               graph_input_node_names,
                               graph_output_node_names,
                               executor_name,
                               serialized_executor_parameters,
                               default_graph_input_tensor_type_shapes=None,
                               default_graph_output_tensor_type_shapes=None):
  """A wrapper for remote_fused_graph_execute."""
  info_proto = info_pb2.RemoteFusedGraphExecuteInfo()
  info_proto.remote_graph.CopyFrom(graph_def)
  info_proto.graph_input_node_name.extend(graph_input_node_names)
  info_proto.graph_output_node_name.extend(graph_output_node_names)
  info_proto.executor_name = executor_name
  info_proto.serialized_executor_parameters = serialized_executor_parameters
  if default_graph_input_tensor_type_shapes:
    for type_shape in default_graph_input_tensor_type_shapes:
      type_shape_proto = info_proto.default_graph_input_tensor_shape.add()
      type_shape_proto.dtype = dtypes.as_dtype(type_shape[0]).as_datatype_enum
      for dim in type_shape[1]:
        type_shape_proto.shape.dim.add().size = dim
  if default_graph_output_tensor_type_shapes:
    for type_shape in default_graph_output_tensor_type_shapes:
      type_shape_proto = info_proto.default_graph_output_tensor_shape.add()
      type_shape_proto.dtype = dtypes.as_dtype(type_shape[0]).as_datatype_enum
      for dim in type_shape[1]:
        type_shape_proto.shape.dim.add().size = dim

  serialized_info = info_proto.SerializeToString()

  return gen_remote_fused_graph_ops.remote_fused_graph_execute(
      inputs, output_types, serialized_info)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:33,代码来源:remote_fused_graph_ops.py

示例6: _DefaultGradYs

def _DefaultGradYs(grad_ys, ys, colocate_gradients_with_ops):
  """Fill in default values for grad_ys.

  Args:
    grad_ys: List of gradients, can contain None.
    ys: List of tensors.
    colocate_gradients_with_ops: If True, try colocating gradients with
      the corresponding op.

  Returns:
    A list of gradients to use, without None.

  Raises:
    ValueError: If one of the grad_ys is invalid.
  """
  if len(grad_ys) != len(ys):
    raise ValueError("Passed %d grad_ys for %d ys" % (len(grad_ys), len(ys)))
  grad_ys = ops.convert_n_to_tensor_or_indexed_slices(grad_ys, name="grad_y")
  for i in xrange(len(grad_ys)):
    grad_y = grad_ys[i]
    y = ys[i]
    if grad_y is None:
      with _maybe_colocate_with(y.op, colocate_gradients_with_ops):
        grad_ys[i] = array_ops.fill(
            array_ops.shape(y), constant_op.constant(
                1, dtype=y.dtype))
    else:
      if grad_y.dtype != y.dtype:
        raise ValueError("Y and ys_grad must be of the same type, "
                         "not y: %s, ys_grad: %s " %
                         (dtypes.as_dtype(y.dtype).name,
                          dtypes.as_dtype(grad_y.dtype).name))
  return grad_ys
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:33,代码来源:gradients_impl.py

示例7: _SatisfiesTypeConstraint

def _SatisfiesTypeConstraint(dtype, attr_def):
  if attr_def.HasField("allowed_values"):
    allowed_list = attr_def.allowed_values.list.type
    if dtype not in allowed_list:
      raise TypeError(
          "DataType %s for attr '%s' not in list of allowed values: %s" %
          (dtypes.as_dtype(dtype).name, attr_def.name,
           ", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:8,代码来源:op_def_library.py

示例8: _testTernary

 def _testTernary(self, op, a, b, c, expected):
   with self.test_session() as session:
     with self.test_scope():
       pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
       pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b")
       pc = array_ops.placeholder(dtypes.as_dtype(c.dtype), c.shape, name="c")
       output = op(pa, pb, pc)
     result = session.run(output, {pa: a, pb: b, pc: c})
     self.assertAllClose(result, expected, rtol=1e-3)
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:9,代码来源:ternary_ops_test.py

示例9: _SatisfiesTypeConstraint

def _SatisfiesTypeConstraint(dtype, attr_def, param_name):
  if attr_def.HasField("allowed_values"):
    allowed_list = attr_def.allowed_values.list.type
    if dtype not in allowed_list:
      raise TypeError(
          "Value passed to parameter '%s' has DataType %s not in list of "
          "allowed values: %s" %
          (param_name, dtypes.as_dtype(dtype).name,
           ", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
开发者ID:cancan101,项目名称:tensorflow,代码行数:9,代码来源:op_def_library.py

示例10: input_builder

 def input_builder(self):
     """Builds inputs in the graph."""
     input_shape = [None] + self.input_shape[1:]
     output_shape = [None] + self.output_shape[1:]
     self._input_placeholder = array_ops.placeholder(dtypes.as_dtype(self.input_dtype), input_shape,
         name="input")
     self._output_placeholder = array_ops.placeholder(dtypes.as_dtype(self.output_dtype), output_shape,
         name="output")
     return self._input_placeholder, self._output_placeholder
开发者ID:August520,项目名称:tensorflow,代码行数:9,代码来源:data_feeder.py

示例11: __init__

  def __init__(self, key_dtype, value_dtype):
    """Construct a table initializer object.

    Args:
      key_dtype: Type of the table keys.
      value_dtype: Type of the table values.
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
开发者ID:andrewharp,项目名称:tensorflow,代码行数:9,代码来源:lookup_ops.py

示例12: _verifySolve

  def _verifySolve(self,
                   x,
                   y,
                   dtype,
                   use_placeholder,
                   fast,
                   l2_regularizer,
                   batch_shape=()):
    if not fast and l2_regularizer != 0:
      # The slow path does not support regularization.
      return
    maxdim = np.max(x.shape)
    if dtype == np.float32 or dtype == np.complex64:
      tol = maxdim * 5e-4
    else:
      tol = maxdim * 5e-7
      a = x.astype(dtype)
      b = y.astype(dtype)
      if dtype in [np.complex64, np.complex128]:
        a.imag = a.real
        b.imag = b.real
      # numpy.linalg.lstqr does not batching, so we just solve a single system
      # and replicate the solution. and residual norm.
      np_ans = _SolveWithNumpy(x, y, l2_regularizer=l2_regularizer)
      np_r = np.dot(np.conj(a.T), b - np.dot(a, np_ans))
      np_r_norm = np.sqrt(np.sum(np.conj(np_r) * np_r))
      if batch_shape is not ():
        a = np.tile(a, batch_shape + (1, 1))
        b = np.tile(b, batch_shape + (1, 1))
        np_ans = np.tile(np_ans, batch_shape + (1, 1))
        np_r_norm = np.tile(np_r_norm, batch_shape)
      with self.cached_session(use_gpu=fast) as sess:
        if use_placeholder:
          a_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
          b_ph = array_ops.placeholder(dtypes.as_dtype(dtype))
          feed_dict = {a_ph: a, b_ph: b}
          tf_ans = linalg_ops.matrix_solve_ls(
              a_ph, b_ph, fast=fast, l2_regularizer=l2_regularizer)
        else:
          tf_ans = linalg_ops.matrix_solve_ls(
              a, b, fast=fast, l2_regularizer=l2_regularizer)
          feed_dict = {}
          self.assertEqual(np_ans.shape, tf_ans.get_shape())
        if l2_regularizer == 0:
          # The least squares solution should satisfy A^H * (b - A*x) = 0.
          tf_r = b - math_ops.matmul(a, tf_ans)
          tf_r = math_ops.matmul(a, tf_r, adjoint_a=True)
          tf_r_norm = linalg_ops.norm(tf_r, ord="fro", axis=[-2, -1])
          tf_ans_val, tf_r_norm_val = sess.run(
              [tf_ans, tf_r_norm], feed_dict=feed_dict)
          self.assertAllClose(np_r_norm, tf_r_norm_val, atol=tol, rtol=tol)
        else:
          tf_ans_val = sess.run(tf_ans, feed_dict=feed_dict)

      self.assertEqual(np_ans.shape, tf_ans_val.shape)
      self.assertAllClose(np_ans, tf_ans_val, atol=2 * tol, rtol=2 * tol)
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:56,代码来源:matrix_solve_ls_op_test.py

示例13: _testBinary

 def _testBinary(self, op, a, b, expected, equality_test=None):
   with self.test_session() as session:
     with self.test_scope():
       pa = array_ops.placeholder(dtypes.as_dtype(a.dtype), a.shape, name="a")
       pb = array_ops.placeholder(dtypes.as_dtype(b.dtype), b.shape, name="b")
       output = op(pa, pb)
     result = session.run(output, {pa: a, pb: b})
     if equality_test is None:
       equality_test = self.assertAllCloseAccordingToType
     equality_test(result, expected, rtol=1e-3)
开发者ID:craffel,项目名称:tensorflow,代码行数:10,代码来源:binary_ops_test.py

示例14: __init__

  def __init__(self, key_dtype, value_dtype):
    """Construct a lookup table interface.

    Args:
      key_dtype: The table key type.
      value_dtype: The table value type.
    """
    self._key_dtype = dtypes.as_dtype(key_dtype)
    self._value_dtype = dtypes.as_dtype(value_dtype)
    super(LookupInterface, self).__init__()
开发者ID:aeverall,项目名称:tensorflow,代码行数:10,代码来源:lookup_ops.py

示例15: make_attr

def make_attr(attr_type, value):
  if attr_type == pywrap_tensorflow.TF_ATTR_TYPE:
    return dtypes.as_dtype(value)
  elif attr_type == [pywrap_tensorflow.TF_ATTR_TYPE]:
    return [dtypes.as_dtype(v) for v in value]
  elif attr_type == pywrap_tensorflow.TF_ATTR_SHAPE:
    return tensor_shape.as_shape(value).as_proto()
  elif attr_type == [pywrap_tensorflow.TF_ATTR_SHAPE]:
    return [tensor_shape.as_shape(v).as_proto() for v in value]
  return value
开发者ID:andrewharp,项目名称:tensorflow,代码行数:10,代码来源:backprop.py


注:本文中的tensorflow.python.framework.dtypes.as_dtype函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。