本文整理汇总了Python中tensorflow.python.framework.device.canonical_name函数的典型用法代码示例。如果您正苦于以下问题:Python canonical_name函数的具体用法?Python canonical_name怎么用?Python canonical_name使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了canonical_name函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: assertDeviceEqual
def assertDeviceEqual(self, device1, device2):
"""Asserts that the two given devices are the same.
Args:
device1: A string device name or TensorFlow `DeviceSpec` object.
device2: A string device name or TensorFlow `DeviceSpec` object.
"""
device1 = pydev.canonical_name(device1)
device2 = pydev.canonical_name(device2)
self.assertEqual(device1, device2, "Devices %s and %s are not equal" % (device1, device2))
示例2: _initialize_handle_and_devices
def _initialize_handle_and_devices(self):
"""Initialize handle and devices."""
with self._initialize_lock:
if self._context_handle is not None:
return
assert self._context_devices is None
opts = pywrap_tensorflow.TFE_NewContextOptions()
try:
if self._config is not None:
config_str = self._config.SerializeToString()
pywrap_tensorflow.TFE_ContextOptionsSetConfig(opts, config_str)
if self._device_policy is not None:
pywrap_tensorflow.TFE_ContextOptionsSetDevicePlacementPolicy(
opts, self._device_policy)
if self._execution_mode == ASYNC:
pywrap_tensorflow.TFE_ContextOptionsSetAsync(opts, True)
self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
finally:
pywrap_tensorflow.TFE_DeleteContextOptions(opts)
# Store list of devices
self._context_devices = []
device_list = pywrap_tensorflow.TFE_ContextListDevices(
self._context_handle)
try:
self._num_gpus = 0
for i in range(pywrap_tensorflow.TF_DeviceListCount(device_list)):
dev_name = pywrap_tensorflow.TF_DeviceListName(device_list, i)
self._context_devices.append(pydev.canonical_name(dev_name))
dev_type = pywrap_tensorflow.TF_DeviceListType(device_list, i)
if dev_type == "GPU":
self._num_gpus += 1
finally:
pywrap_tensorflow.TF_DeleteDeviceList(device_list)
示例3: all_gather
def all_gather(t, group_size, group_key, instance_key):
"""Accumulates tensors collectively, across devices, along first dimension.
Args:
t: the tensor to participate in the accumulation.
group_size: the total number of tensors to be collectively accumulated.
Each must reside on a different device.
group_key: an integer identifying the group of devices.
instance_key: an integer identifying the participating group of Ops.
Returns:
An Op implementing the distributed operation.
Raises:
ValueError: if any of the input parameter constraints are not met.
"""
if not device.canonical_name(t.device):
raise ValueError('Device assignment required for collective ops')
if group_size <= 1:
raise ValueError('Parameter group_size to all_gather must be at least 2.')
dims = t.shape.as_list()
output_shape = [dims[0] * group_size] + dims[1:]
return gen_collective_ops.collective_gather(t,
shape=output_shape,
group_size=group_size,
group_key=group_key,
instance_key=instance_key)
示例4: all_reduce
def all_reduce(t, group_size, group_key, instance_key, merge_op, final_op,
subdiv_offsets=(0,)):
"""Reduces tensors collectively, across devices.
Args:
t: the tensor to be reduced.
group_size: the total number of tensors to be collectively reduced.
Each must reside on a different device.
group_key: an integer identifying the group of devices.
instance_key: an integer identifying the participating group of Ops.
merge_op: string naming the binary Op to be applied to compute each
partial reduction.
final_op: string naming the unary Op to be applied to each fully
reduced value. Can be 'Id' for no operation.
subdiv_offsets: a list of integer offsets into the tensor at which each
independent subdivision should begin. Use [0] if no subdivision should
be done.
Returns:
An Op implementing the distributed reduction.
Raises:
ValueError: if any of the input parameter constraints are not met.
"""
if not device.canonical_name(t.device):
raise ValueError('Device assignment required for collective ops')
if group_size <= 1:
raise ValueError('Parameter group_size to all_reduce must be at least 2.')
return gen_collective_ops.collective_reduce(t,
group_size=group_size,
group_key=group_key,
instance_key=instance_key,
merge_op=merge_op,
final_op=final_op,
subdiv_offsets=subdiv_offsets)
示例5: _initialize_handle_and_devices
def _initialize_handle_and_devices(self):
"""Initialize handle and devices."""
with self._initialize_lock:
if self._context_handle is not None:
return
assert self._context_devices is None
opts = pywrap_tensorflow.TF_NewSessionOptions(
target=compat.as_bytes(""), config=self._config)
with errors.raise_exception_on_not_ok_status() as status:
self._context_handle = pywrap_tensorflow.TFE_NewContext(opts, status)
pywrap_tensorflow.TF_DeleteSessionOptions(opts)
# Store list of devices
self._context_devices = []
with errors.raise_exception_on_not_ok_status() as status:
device_list = pywrap_tensorflow.TFE_ContextListDevices(
self._context_handle, status)
try:
self._num_gpus = 0
for i in range(pywrap_tensorflow.TF_DeviceListCount(device_list)):
with errors.raise_exception_on_not_ok_status() as status:
dev_name = pywrap_tensorflow.TF_DeviceListName(
device_list, i, status)
self._context_devices.append(pydev.canonical_name(dev_name))
with errors.raise_exception_on_not_ok_status() as status:
dev_type = pywrap_tensorflow.TF_DeviceListType(
device_list, i, status)
if dev_type == "GPU":
self._num_gpus += 1
finally:
pywrap_tensorflow.TF_DeleteDeviceList(device_list)
示例6: _apply_all_reduce
def _apply_all_reduce(reduction_op, tensors):
if not tensors:
raise ValueError('Must pass >0 tensors to all reduce operations')
shared_name = _get_shared_name()
res = []
for t in tensors:
if not device.canonical_name(t.device):
raise ValueError('Device assignment required for nccl collective ops')
with ops.device(t.device):
res.append(
gen_nccl_ops.nccl_all_reduce(
t,
reduction=reduction_op,
num_devices=len(tensors),
shared_name=shared_name))
return res
示例7: _initialize_devices
def _initialize_devices(self):
"""Helper to initialize devices."""
# Store list of devices
self._context_devices = []
device_list = pywrap_tensorflow.TFE_ContextListDevices(
self._context_handle)
try:
self._num_gpus = 0
for i in range(pywrap_tensorflow.TF_DeviceListCount(device_list)):
dev_name = pywrap_tensorflow.TF_DeviceListName(device_list, i)
self._context_devices.append(pydev.canonical_name(dev_name))
dev_type = pywrap_tensorflow.TF_DeviceListType(device_list, i)
if dev_type == "GPU":
self._num_gpus += 1
finally:
pywrap_tensorflow.TF_DeleteDeviceList(device_list)
示例8: broadcast_send
def broadcast_send(t, shape, dtype, group_size, group_key, instance_key):
"""Broadcasts one tensor to a group of others, across devices.
Args:
t: the tensor to be sent.
shape: the shape of the tensor being sent, which must agree with t.
dtype: the type of the tensor being sent, which must agree with t.
group_size: one plus the number of receiving tensors, i.e. the total
number of devices participating. Each tensor must reside on a
different device.
group_key: an integer identifying the group of devices.
instance_key: an integer identifying the participating group of Ops.
Returns:
An Op implementing the distributed broadcast send.
Raises:
ValueError: if any of the input parameter constraints are not met.
Note that the shape and dtype arguments appear redundant since they
should be obtainable from t. The are two reasons for including
them. First, the shape and type of tensors passed via broadcast must
be known ahead of time in their most specific form so that the receive
side can allocate memory for the operation and shape/type inference can
carry forward from there. Including the same declarations on the
send side clarifies a commitment already made. Secondly, having nearly
identical use syntax for send and receive sides may simplify tool-driven
generation of broadcast.
"""
if not device.canonical_name(t.device):
raise ValueError('Device assignment required for collective ops')
if group_size <= 1:
raise ValueError(
'Parameter group_size to broadcast_send must be at least 2.')
if t.shape != shape:
raise ValueError(
'Shape of broadcast_send tensor not equal to delcared shape')
if t.dtype != dtype:
raise ValueError(
'Type of broadcast_send tensor not equal to declared type')
return gen_collective_ops.collective_bcast_send(t,
shape=shape,
group_size=group_size,
group_key=group_key,
instance_key=instance_key)
示例9: _GroupByDevices
def _GroupByDevices(self, vars_to_save):
"""Group Variable tensor slices per device.
TODO(touts): Make sure that all the devices found are on different
job/replica/task/cpu|gpu. It would be bad if 2 were on the same device.
It can happen if the devices as unspecified.
Args:
vars_to_save: A list of BaseSaverBuilder.VarToSave objects.
Returns:
A list of tuples: (device_name, BaseSaverBuilder.VarToSave) tuples.
The list is sorted by ascending device_name.
"""
per_device = collections.defaultdict(lambda: [])
for var_to_save in vars_to_save:
canonical_device = pydev.canonical_name(var_to_save.var.device)
per_device[canonical_device].append(var_to_save)
return sorted(per_device.items(), key=lambda t: t[0])
示例10: testCanonicalName
def testCanonicalName(self):
self.assertEqual("/job:foo/replica:0",
device.canonical_name("/job:foo/replica:0"))
self.assertEqual("/job:foo/replica:0",
device.canonical_name("/replica:0/job:foo"))
self.assertEqual("/job:foo/replica:0/task:0",
device.canonical_name("/job:foo/replica:0/task:0"))
self.assertEqual("/job:foo/replica:0/task:0",
device.canonical_name("/job:foo/task:0/replica:0"))
self.assertEqual("/device:CPU:0",
device.canonical_name("/device:CPU:0"))
self.assertEqual("/device:GPU:2",
device.canonical_name("/device:GPU:2"))
self.assertEqual("/job:foo/replica:0/task:0/device:GPU:0",
device.canonical_name(
"/job:foo/replica:0/task:0/gpu:0"))
self.assertEqual("/job:foo/replica:0/task:0/device:GPU:0",
device.canonical_name(
"/gpu:0/task:0/replica:0/job:foo"))
示例11: _initialize_handle_and_devices
def _initialize_handle_and_devices(self):
"""Initialize handle and devices."""
with self._initialize_lock:
if self._context_handle is not None:
return
assert self._context_devices is None
opts = pywrap_tensorflow.TFE_NewContextOptions()
try:
with errors.raise_exception_on_not_ok_status() as status:
if self._config is not None:
config_str = self._config.SerializeToString()
pywrap_tensorflow.TFE_ContextOptionsSetConfig(
opts, config_str, len(config_str), status)
if self._device_policy is not None:
pywrap_tensorflow.TFE_ContextOptionsSetDevicePlacementPolicy(
opts, self._device_policy)
self._context_handle = pywrap_tensorflow.TFE_NewContext(opts, status)
finally:
pywrap_tensorflow.TFE_DeleteContextOptions(opts)
# Store list of devices
self._context_devices = []
with errors.raise_exception_on_not_ok_status() as status:
device_list = pywrap_tensorflow.TFE_ContextListDevices(
self._context_handle, status)
try:
self._num_gpus = 0
for i in range(pywrap_tensorflow.TF_DeviceListCount(device_list)):
with errors.raise_exception_on_not_ok_status() as status:
dev_name = pywrap_tensorflow.TF_DeviceListName(
device_list, i, status)
self._context_devices.append(pydev.canonical_name(dev_name))
with errors.raise_exception_on_not_ok_status() as status:
dev_type = pywrap_tensorflow.TF_DeviceListType(
device_list, i, status)
if dev_type == "GPU":
self._num_gpus += 1
finally:
pywrap_tensorflow.TF_DeleteDeviceList(device_list)
示例12: _get_device_name
def _get_device_name(handle):
"""The device name encoded in the handle."""
handle_str = compat.as_str_any(handle)
return pydev.canonical_name(handle_str.split(";")[-1])
示例13: _check_device
def _check_device(tensor, expected=None):
if not device.canonical_name(tensor.device):
raise ValueError('Device assignment required for nccl collective ops')
if expected and expected != tensor.device:
raise ValueError('Expected device %s, got %s' % (expected, tensor.device))
示例14: _check_device_assignment
def _check_device_assignment(tensor):
if not device.canonical_name(tensor.device):
raise ValueError('Device assignment required for nccl collective ops')