当前位置: 首页>>代码示例>>Python>>正文


Python constant_op.constant函数代码示例

本文整理汇总了Python中tensorflow.python.framework.constant_op.constant函数的典型用法代码示例。如果您正苦于以下问题:Python constant函数的具体用法?Python constant怎么用?Python constant使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了constant函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testFixedNonUniform

  def testFixedNonUniform(self):
    """Sets up the quantile summary op test as follows.

    Creates array dividing range [0, 1] to 1<<16 elements equally spaced
    with weight same as the value.
    """
    dense_float_tensor_0 = constant_op.constant(
        [(1.0 * i) / math.pow(2.0, 16)
         for i in range(0, int(math.pow(2, 16)) + 1)])
    example_weights = constant_op.constant(
        [(1.0 * i) / math.pow(2.0, 16)
         for i in range(0, int(math.pow(2, 16)) + 1)])

    config = self._gen_config(0.1, 10)

    with self.test_session():
      dense_buckets, _ = quantile_ops.quantile_buckets(
          [dense_float_tensor_0], [], [], [],
          example_weights=example_weights,
          dense_config=[config],
          sparse_config=[])
      self.assertAllClose(
          [0] + [math.sqrt((i + 1.0) / 10) for i in range(0, 10)],
          dense_buckets[0].eval(),
          atol=0.1)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:25,代码来源:quantile_ops_test.py

示例2: testCopyToGPU

  def testCopyToGPU(self):
    if not test_util.is_gpu_available():
      self.skipTest("No GPU available")

    with ops.device("/cpu:0"):
      optional_with_value = optional_ops.Optional.from_value(
          (constant_op.constant(37.0), constant_op.constant("Foo"),
           constant_op.constant(42)))
      optional_none = optional_ops.Optional.none_from_structure(
          structure.TensorStructure(dtypes.float32, []))

    with ops.device("/gpu:0"):
      gpu_optional_with_value = optional_ops._OptionalImpl(
          array_ops.identity(optional_with_value._variant_tensor),
          optional_with_value.value_structure)
      gpu_optional_none = optional_ops._OptionalImpl(
          array_ops.identity(optional_none._variant_tensor),
          optional_none.value_structure)

      gpu_optional_with_value_has_value = gpu_optional_with_value.has_value()
      gpu_optional_with_value_values = gpu_optional_with_value.get_value()

      gpu_optional_none_has_value = gpu_optional_none.has_value()

    self.assertTrue(self.evaluate(gpu_optional_with_value_has_value))
    self.assertEqual((37.0, b"Foo", 42),
                     self.evaluate(gpu_optional_with_value_values))
    self.assertFalse(self.evaluate(gpu_optional_none_has_value))
开发者ID:bunbutter,项目名称:tensorflow,代码行数:28,代码来源:optional_test.py

示例3: testShapeWrong

 def testShapeWrong(self):
   with ops.Graph().as_default():
     with self.assertRaisesWithPredicateMatch(
         ValueError,
         lambda e: ("Too many elements provided. Needed at most 5, "
                    "but received 7" == str(e))):
       constant_op.constant([1, 2, 3, 4, 5, 6, 7], shape=[5])
开发者ID:piyushjaiswal98,项目名称:tensorflow,代码行数:7,代码来源:constant_op_test.py

示例4: testStudentSampleMultiDimensional

 def testStudentSampleMultiDimensional(self):
   with self.test_session():
     batch_size = 7
     df = constant_op.constant([[3., 7.]] * batch_size)
     mu = constant_op.constant([[3., -3.]] * batch_size)
     sigma = constant_op.constant([[math.sqrt(10.), math.sqrt(15.)]] *
                                  batch_size)
     df_v = [3., 7.]
     mu_v = [3., -3.]
     sigma_v = [np.sqrt(10.), np.sqrt(15.)]
     n = constant_op.constant(200000)
     student = student_t.StudentT(df=df, loc=mu, scale=sigma)
     samples = student.sample(n, seed=123456)
     sample_values = self.evaluate(samples)
     self.assertEqual(samples.get_shape(), (200000, batch_size, 2))
     self.assertAllClose(
         sample_values[:, 0, 0].mean(), mu_v[0], rtol=1e-2, atol=0)
     self.assertAllClose(
         sample_values[:, 0, 0].var(),
         sigma_v[0]**2 * df_v[0] / (df_v[0] - 2),
         rtol=1e-1,
         atol=0)
     self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 0])
     self.assertAllClose(
         sample_values[:, 0, 1].mean(), mu_v[1], rtol=1e-2, atol=0)
     self.assertAllClose(
         sample_values[:, 0, 1].var(),
         sigma_v[1]**2 * df_v[1] / (df_v[1] - 2),
         rtol=1e-1,
         atol=0)
     self._checkKLApprox(df_v[0], mu_v[0], sigma_v[0], sample_values[:, 0, 1])
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:31,代码来源:student_t_test.py

示例5: testStudentLogPDFMultidimensional

  def testStudentLogPDFMultidimensional(self):
    with self.test_session():
      batch_size = 6
      df = constant_op.constant([[1.5, 7.2]] * batch_size)
      mu = constant_op.constant([[3., -3.]] * batch_size)
      sigma = constant_op.constant([[-math.sqrt(10.), math.sqrt(15.)]] *
                                   batch_size)
      df_v = np.array([1.5, 7.2])
      mu_v = np.array([3., -3.])
      sigma_v = np.array([np.sqrt(10.), np.sqrt(15.)])
      t = np.array([[-2.5, 2.5, 4., 0., -1., 2.]], dtype=np.float32).T
      student = student_t.StudentT(df, loc=mu, scale=sigma)
      log_pdf = student.log_prob(t)
      log_pdf_values = self.evaluate(log_pdf)
      self.assertEqual(log_pdf.get_shape(), (6, 2))
      pdf = student.prob(t)
      pdf_values = self.evaluate(pdf)
      self.assertEqual(pdf.get_shape(), (6, 2))

      if not stats:
        return
      expected_log_pdf = stats.t.logpdf(t, df_v, loc=mu_v, scale=sigma_v)
      expected_pdf = stats.t.pdf(t, df_v, loc=mu_v, scale=sigma_v)
      self.assertAllClose(expected_log_pdf, log_pdf_values)
      self.assertAllClose(np.log(expected_pdf), log_pdf_values)
      self.assertAllClose(expected_pdf, pdf_values)
      self.assertAllClose(np.exp(expected_log_pdf), pdf_values)
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:27,代码来源:student_t_test.py

示例6: test_serving_input_receiver_receiver_tensors_invalid

  def test_serving_input_receiver_receiver_tensors_invalid(self):
    features = {
        "feature0": constant_op.constant([0]),
        u"feature1": constant_op.constant([1]),
        "feature2": sparse_tensor.SparseTensor(
            indices=[[0, 0]], values=[1], dense_shape=[1, 1]),
    }

    with self.assertRaisesRegexp(
        ValueError, "receiver_tensors must be defined"):
      export.ServingInputReceiver(
          features=features,
          receiver_tensors=None)

    with self.assertRaisesRegexp(
        ValueError, "receiver_tensors keys must be strings"):
      export.ServingInputReceiver(
          features=features,
          receiver_tensors={
              1: array_ops.placeholder(dtypes.string, name="example0")})

    with self.assertRaisesRegexp(
        ValueError, "receiver_tensor example1 must be a Tensor"):
      export.ServingInputReceiver(
          features=features,
          receiver_tensors={"example1": [1]})
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:26,代码来源:export_test.py

示例7: testScalar

 def testScalar(self):
   with self.test_session():
     x = constant_op.constant(1.0, dtypes.float32)
     y = constant_op.constant(2.0, dtypes.float32)
     z = self.evaluate(
         script_ops.eager_py_func(np_func, [x, y], [dtypes.float32]))
     self.assertEqual(z[0], np_func(1.0, 2.0).astype(np.float32))
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:7,代码来源:py_func_test.py

示例8: testAcceptsIndexedSlices

 def testAcceptsIndexedSlices(self):
   values = constant_op.constant([2, 3, 5, 7, 0, -1], shape=[3, 2])
   indices = constant_op.constant([0, 2, 5])
   x = math_ops.scalar_mul(-3, ops.IndexedSlices(values, indices))
   with self.test_session(use_gpu=True):
     self.assertAllEqual(x.values.eval(), [[-6, -9], [-15, -21], [0, 3]])
     self.assertAllEqual(x.indices.eval(), [0, 2, 5])
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:7,代码来源:math_ops_test.py

示例9: testGradientsRank7SliceUpdate

  def testGradientsRank7SliceUpdate(self):
    for dtype in GRADIENT_TESTS_DTYPES:
      indices = constant_op.constant(
          [[[[[[[0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0]]]],
             [[[[0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1]]]]]]],
          dtype=dtypes.int32)
      updates = constant_op.constant(
          [[[[[[[5, 6], [2, 4]]]], [[[[1, 3], [6, 8]]]]]]], dtype=dtype)
      shape = constant_op.constant([1, 1, 2, 1, 1, 2, 2], dtype=dtypes.int32)
      input_ = array_ops.zeros(shape, dtype=dtype)
      outputs = self.scatter_nd(indices, updates, shape, input_)

      grad_vals = constant_op.constant(
          [[[[[[[1, 2], [3, 4]]]], [[[[5, 6], [7, 8]]]]]]], dtype=dtype)
      updates_grad, input_grad = gradients_impl.gradients(
          [outputs], [updates, input_], [grad_vals])
      expected_updates_grad = np.array(
          [[[[[[[3, 4], [5, 6]]]], [[[[1, 2], [7, 8]]]]]]],
          dtype=dtype.as_numpy_dtype())
      expected_input_grad = np.array(
          [[[[[[[1, 2], [3, 4]]]], [[[[5, 6], [7, 8]]]]]]],
          dtype=dtype.as_numpy_dtype())
      with self.cached_session():
        self.assertAllEqual(expected_updates_grad, updates_grad.eval())
        if self.non_aliasing_add_test:
          self.assertAllEqual(expected_input_grad, input_grad.eval())
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:26,代码来源:scatter_nd_ops_test.py

示例10: testInvalidSlice

 def testInvalidSlice(self):
   with self.test_session() as sess:
     foo = constant_op.constant([1, 2, 3])
     with self.assertRaisesRegexp(ValueError, "Sliced assignment"
                                  " is only supported for variables"):
       bar = foo[:2].assign(constant_op.constant([1, 2]))
       sess.run(bar)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:array_ops_test.py

示例11: testTensorLearningRate

  def testTensorLearningRate(self):
    for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
      with self.cached_session():
        # Initialize variables for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

        var0 = variables.Variable(var0_np)
        var1 = variables.Variable(var1_np)
        grads0 = constant_op.constant(grads0_np)
        grads1 = constant_op.constant(grads1_np)
        opt = adamax.Adamax(constant_op.constant(0.001))
        update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
        variables.global_variables_initializer().run()

        # Fetch params to validate initial values
        self.assertAllClose([1.0, 2.0], var0.eval())
        self.assertAllClose([3.0, 4.0], var1.eval())

        beta1_power = get_beta_accumulators(opt, dtype)

        # Run 3 steps of Adamax
        for t in range(3):
          self.assertAllCloseAccordingToType(0.9**(t + 1), beta1_power.eval())
          update.run()

          var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0)
          var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1)

          # Validate updated params
          self.assertAllCloseAccordingToType(var0_np, var0.eval())
          self.assertAllCloseAccordingToType(var1_np, var1.eval())
开发者ID:Wajih-O,项目名称:tensorflow,代码行数:35,代码来源:adamax_test.py

示例12: _make_indexed_slices

def _make_indexed_slices(values, indices, dense_shape, device):
  with ops.device(device):
    tensor = ops.IndexedSlices(
        values=constant_op.constant(values),
        indices=constant_op.constant(indices),
        dense_shape=constant_op.constant(dense_shape))
  return tensor
开发者ID:BhaskarNallani,项目名称:tensorflow,代码行数:7,代码来源:cross_tower_ops_test.py

示例13: testContainsIndexedSlices_PerReplica

 def testContainsIndexedSlices_PerReplica(self):
   t0 = math_ops._as_indexed_slices(
       constant_op.constant([[1., 2.], [0, 0], [3., 4.]]))
   t1 = math_ops._as_indexed_slices(
       constant_op.constant([[0., 0.], [5, 6], [7., 8.]]))
   per_replica = value_lib.PerReplica({"/gpu:0": t0, "/cpu:0": t1})
   self.assertTrue(cross_device_utils.contains_indexed_slices(per_replica))
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:7,代码来源:cross_device_utils_test.py

示例14: _testDropoutWrapper

 def _testDropoutWrapper(self, batch_size=None, time_steps=None,
                         parallel_iterations=None, **kwargs):
   with self.test_session() as sess:
     with variable_scope.variable_scope(
         "root", initializer=init_ops.constant_initializer(0.5)):
       if batch_size is None and time_steps is None:
         # 2 time steps, batch size 1, depth 3
         batch_size = 1
         time_steps = 2
         x = constant_op.constant(
             [[[2., 2., 2.]], [[1., 1., 1.]]], dtype=dtypes.float32)
         m = rnn_cell_impl.LSTMStateTuple(
             *[constant_op.constant([[0.1, 0.1, 0.1]], dtype=dtypes.float32)
              ] * 2)
       else:
         x = constant_op.constant(
             np.random.randn(time_steps, batch_size, 3).astype(np.float32))
         m = rnn_cell_impl.LSTMStateTuple(*[
             constant_op.constant(
                 [[0.1, 0.1, 0.1]] * batch_size, dtype=dtypes.float32)
         ] * 2)
       outputs, final_state = rnn.dynamic_rnn(
           cell=rnn_cell_impl.DropoutWrapper(
               rnn_cell_impl.LSTMCell(3), dtype=x.dtype, **kwargs),
           time_major=True,
           parallel_iterations=parallel_iterations,
           inputs=x,
           initial_state=m)
       sess.run([variables_lib.global_variables_initializer()])
       res = sess.run([outputs, final_state])
       self.assertEqual(res[0].shape, (time_steps, batch_size, 3))
       self.assertEqual(res[1].c.shape, (batch_size, 3))
       self.assertEqual(res[1].h.shape, (batch_size, 3))
       return res
开发者ID:ggaziv,项目名称:tensorflow,代码行数:34,代码来源:core_rnn_cell_test.py

示例15: testDifferentiableFunctionNoneOutputs

  def testDifferentiableFunctionNoneOutputs(self):

    @function.defun
    def my_function(x):
      return x, None

    def wrapper(x):
      return my_function(x)[0]

    g = backprop.gradients_function(wrapper, [0])(constant_op.constant(0.0))
    self.assertAllEqual(g[0], 1.)

    @function.defun
    def foo(a):
      return None, a * a

    x = constant_op.constant(5.0)
    with backprop.GradientTape() as tp:
      tp.watch(x)
      none, r = foo(x)
    g = tp.gradient(r, x)

    self.assertIs(none, None)
    self.assertAllEqual(r, 25.0)
    self.assertAllEqual(g, 2 * 5.0)
开发者ID:StephenOman,项目名称:tensorflow,代码行数:25,代码来源:function_test.py


注:本文中的tensorflow.python.framework.constant_op.constant函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。