当前位置: 首页>>代码示例>>Python>>正文


Python c_api_util.tf_buffer函数代码示例

本文整理汇总了Python中tensorflow.python.framework.c_api_util.tf_buffer函数的典型用法代码示例。如果您正苦于以下问题:Python tf_buffer函数的具体用法?Python tf_buffer怎么用?Python tf_buffer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了tf_buffer函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: stop

def stop():
  """Stop current profiling session and return its result.

  Returns:
    A binary string of tensorflow.tpu.Trace. User can write the string
    to file for offline analysis by tensorboard.

  Raises:
    ProfilerNotRunningError: If there is no active profiling session.
  """
  global _profiler
  global _run_num
  with _profiler_lock:
    if _profiler is None:
      raise ProfilerNotRunningError(
          'Cannot stop profiling. No profiler is running.')
    with c_api_util.tf_buffer() as buffer_:
      pywrap_tensorflow.TFE_ProfilerSerializeToString(
          context.context()._handle,  # pylint: disable=protected-access
          _profiler,
          buffer_)
      result = pywrap_tensorflow.TF_GetBuffer(buffer_)
    pywrap_tensorflow.TFE_DeleteProfiler(_profiler)
    _profiler = None
    _run_num += 1
  return result
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:26,代码来源:profiler.py

示例2: function_def_from_tf_function

def function_def_from_tf_function(c_func):
  """Converts a SWIG-wrapped TF_Function* to a FunctionDef proto."""
  with c_api_util.tf_buffer() as buf:
    c_api.TF_FunctionToFunctionDef(c_func, buf)
    data = c_api.TF_GetBuffer(buf)
  fdef = function_pb2.FunctionDef()
  fdef.ParseFromString(compat.as_bytes(data))
  return fdef
开发者ID:JonathanRaiman,项目名称:tensorflow,代码行数:8,代码来源:function.py

示例3: get_resource_handle_data

def get_resource_handle_data(graph_op):
  assert ops._USE_C_SHAPES  # pylint: disable=protected-access
  assert type(graph_op) == ops.Tensor  # pylint: disable=unidiomatic-typecheck

  with c_api_util.tf_buffer() as buf:
    pywrap_tensorflow.TFE_GetResourceHandleShapeAndType(
        graph_op.graph._c_graph, graph_op._as_tf_output(), buf)  # pylint: disable=protected-access
    data = pywrap_tensorflow.TF_GetBuffer(buf)

  return cpp_shape_inference_pb2.CppShapeInferenceResult.HandleData.FromString(
      compat.as_bytes(data))
开发者ID:kimr843,项目名称:tensorflow,代码行数:11,代码来源:resource_variable_ops.py

示例4: definition

 def definition(self):
   """Function definition proto."""
   self._create_definition_if_needed()
   if self._c_func:
     with c_api_util.tf_buffer() as buf:
       c_api.TF_FunctionToFunctionDef(self._c_func.func, buf)
       fdef = function_pb2.FunctionDef()
       proto_data = c_api.TF_GetBuffer(buf)
       fdef.ParseFromString(compat.as_bytes(proto_data))
     return fdef
   return self._definition
开发者ID:didukhle,项目名称:tensorflow,代码行数:11,代码来源:function.py

示例5: definition

 def definition(self):
   """Function definition proto."""
   self._create_definition_if_needed()
   if self._c_func:
     with c_api_util.tf_buffer() as buf:
       with errors.raise_exception_on_not_ok_status() as status:
         c_api.TF_FunctionToFunctionDef(self._c_func, buf, status)
       fdef = function_pb2.FunctionDef()
       proto_data = c_api.TF_GetBuffer(buf)
       fdef.ParseFromString(compat.as_bytes(proto_data))
     return fdef
   return self._definition
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:12,代码来源:function.py

示例6: value

  def value(self):
    """Retrieves the current distribution of samples.

    Returns:
      A HistogramProto describing the distribution of samples.
    """
    with c_api_util.tf_buffer() as buffer_:
      pywrap_tensorflow.TFE_MonitoringSamplerCellValue(self._cell, buffer_)
      proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_)
    histogram_proto = summary_pb2.HistogramProto()
    histogram_proto.ParseFromString(compat.as_bytes(proto_data))
    return histogram_proto
开发者ID:aritratony,项目名称:tensorflow,代码行数:12,代码来源:monitoring.py

示例7: export_run_metadata

  def export_run_metadata(self):
    """Returns a RunMetadata proto with accumulated information.

    The returned protocol buffer contains information since the most recent call
    to either enable_run_metadata or export_run_metadata.

    Returns:
      A RunMetadata protocol buffer.
    """
    with c_api_util.tf_buffer() as buffer_:
      with errors.raise_exception_on_not_ok_status() as status:
        pywrap_tensorflow.TFE_ContextExportRunMetadata(
            self._context_handle, buffer_, status)
      proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_)
    run_metadata = config_pb2.RunMetadata()
    run_metadata.ParseFromString(compat.as_bytes(proto_data))
    return run_metadata
开发者ID:Lin-jipeng,项目名称:tensorflow,代码行数:17,代码来源:context.py

示例8: __init__

  def __init__(self, name, graph, operations, inputs, outputs, attrs):
    """Initializes an eager defined function.

    Args:
      name: str, the name for the created function.
      graph: Graph, the graph containing the operations in the function
      operations: list of Operation; the subset of operations in the graph
        which will be in the function
      inputs: the tensors in the graph to be used as inputs to the function
      outputs: the tensors in the graph which will be outputs to the function
      attrs: dict mapping names of attributes to their AttrValue values
    """
    fn = pywrap_tensorflow.TF_GraphToFunction_wrapper(
        graph._c_graph,  # pylint: disable=protected-access
        compat.as_str(name),
        False,
        [o._c_op for o in operations],  # pylint: disable=protected-access
        [t._as_tf_output() for t in inputs],  # pylint: disable=protected-access
        [t._as_tf_output() for t in outputs],  # pylint: disable=protected-access
        [],
        None,
        compat.as_str(""))

    for name, attr_value in attrs.items():
      serialized = attr_value.SerializeToString()
      # TODO(iga): this creates and deletes a new TF_Status for every attr.
      # It might be worth creating a convenient way to re-use status.
      pywrap_tensorflow.TF_FunctionSetAttrValueProto(
          fn, compat.as_str(name), serialized)

    # TODO(apassos) avoid creating a FunctionDef (specially to grab the
    # signature, but also in general it's nice not to depend on it.
    with c_api_util.tf_buffer() as buffer_:
      pywrap_tensorflow.TF_FunctionToFunctionDef(fn, buffer_)
      proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_)
    function_def = function_pb2.FunctionDef()
    function_def.ParseFromString(compat.as_bytes(proto_data))
    if context.executing_eagerly():
      _register(fn)
    self.definition = function_def
    self.name = function_def.signature.name
    self.signature = function_def.signature
    self.grad_func_name = None
    self.python_grad_func = None
    self._c_func = c_api_util.ScopedTFFunction(fn)
    self._grad_func = None
开发者ID:KiaraStarlab,项目名称:tensorflow,代码行数:46,代码来源:function.py

示例9: export_run_metadata

  def export_run_metadata(self):
    """Returns a RunMetadata proto with accumulated information.

    The returned protocol buffer contains information since the most recent call
    to either enable_run_metadata or export_run_metadata.

    Returns:
      A RunMetadata protocol buffer. Or None if not enabled.
    """
    if not self._context_handle:
      return None
    with c_api_util.tf_buffer() as buffer_:
      pywrap_tensorflow.TFE_ContextExportRunMetadata(
          self._context_handle, buffer_)
      proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_)
    run_metadata = config_pb2.RunMetadata()
    run_metadata.ParseFromString(compat.as_bytes(proto_data))
    return run_metadata
开发者ID:Jackiefan,项目名称:tensorflow,代码行数:18,代码来源:context.py

示例10: __init__

  def __init__(self, name, graph, operations, inputs, outputs):
    """Initializes an eager defined function.

    Args:
      name: str, the name for the created function.
      graph: Graph, the graph containing the operations in the function
      operations: list of Operation; the subset of operations in the graph
        which will be in the function
      inputs: the tensors in the graph to be used as inputs to the function
      outputs: the tensors in the graph which will be outputs to the function
    """
    with errors.raise_exception_on_not_ok_status() as status:
      fn = pywrap_tensorflow.TF_GraphToFunction_wrapper(
          graph._c_graph,  # pylint: disable=protected-access
          compat.as_str(name),
          False,
          [o._c_op for o in operations],  # pylint: disable=protected-access
          [t._as_tf_output() for t in inputs],  # pylint: disable=protected-access
          [t._as_tf_output() for t in outputs],  # pylint: disable=protected-access
          [],
          None,
          compat.as_str(""),
          status)
    # TODO(apassos) avoid creating a FunctionDef (specially to grab the
    # signature, but also in general it's nice not to depend on it.
    with c_api_util.tf_buffer() as buffer_:
      with errors.raise_exception_on_not_ok_status() as status:
        pywrap_tensorflow.TF_FunctionToFunctionDef(fn, buffer_, status)
      proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_)
    function_def = function_pb2.FunctionDef()
    function_def.ParseFromString(compat.as_bytes(proto_data))
    if context.executing_eagerly():
      _register(fn)
    self.definition = function_def
    self.name = function_def.signature.name
    self.signature = function_def.signature
    self.grad_func_name = None
    self.python_grad_func = None
    self._c_func = fn
    self._grad_func = None
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:40,代码来源:function.py

示例11: import_graph_def

def import_graph_def(graph_def, input_map=None, return_elements=None,
                     name=None, op_dict=None, producer_op_list=None):
  """Imports the graph from `graph_def` into the current default `Graph`.

  This function provides a way to import a serialized TensorFlow
  [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
  protocol buffer, and extract individual objects in the `GraphDef` as
  @{tf.Tensor} and @{tf.Operation} objects. Once extracted,
  these objects are placed into the current default `Graph`. See
  @{tf.Graph.as_graph_def} for a way to create a `GraphDef`
  proto.

  Args:
    graph_def: A `GraphDef` proto containing operations to be imported into
      the default graph.
    input_map: A dictionary mapping input names (as strings) in `graph_def`
      to `Tensor` objects. The values of the named input tensors in the
      imported graph will be re-mapped to the respective `Tensor` values.
    return_elements: A list of strings containing operation names in
      `graph_def` that will be returned as `Operation` objects; and/or
      tensor names in `graph_def` that will be returned as `Tensor` objects.
    name: (Optional.) A prefix that will be prepended to the names in
      `graph_def`. Note that this does not apply to imported function names.
      Defaults to `"import"`.
    op_dict: (Optional.) Deprecated, do not use.
    producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped)
      list of `OpDef`s used by the producer of the graph. If provided,
      unrecognized attrs for ops in `graph_def` that have their default value
      according to `producer_op_list` will be removed. This will allow some more
      `GraphDef`s produced by later binaries to be accepted by earlier binaries.

  Returns:
    A list of `Operation` and/or `Tensor` objects from the imported graph,
    corresponding to the names in `return_elements`.

  Raises:
    TypeError: If `graph_def` is not a `GraphDef` proto,
      `input_map` is not a dictionary mapping strings to `Tensor` objects,
      or `return_elements` is not a list of strings.
    ValueError: If `input_map`, or `return_elements` contains names that
      do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
      it refers to an unknown tensor).
  """
  graph_def = _ProcessGraphDefParam(graph_def)
  input_map = _ProcessInputMapParam(input_map)
  return_elements = _ProcessReturnElementsParam(return_elements)

  op_dict = op_def_registry.get_registered_ops()

  if producer_op_list is not None:
    # TODO(skyewm): make a copy of graph_def so we're not mutating the argument?
    _RemoveDefaultAttrs(op_dict, producer_op_list, graph_def)

  graph = ops.get_default_graph()

  if graph._c_graph:  # pylint: disable=protected-access
    with ops.name_scope(name, 'import', input_map.values()) as scope:
      # Save unique prefix generated by name_scope
      if scope:
        assert scope.endswith('/')
        prefix = scope[:-1]
      else:
        prefix = ''

      # Generate any input map tensors inside name scope
      input_map = _ConvertInputMapValues(name, input_map)

    scoped_options = c_api_util.ScopedTFImportGraphDefOptions()
    options = scoped_options.options
    _PopulateTFImportGraphDefOptions(options, prefix, input_map,
                                     return_elements)

    with c_api_util.tf_buffer(graph_def.SerializeToString()) as serialized:
      try:
        with errors.raise_exception_on_not_ok_status() as status:
          results = c_api.TF_GraphImportGraphDefWithResults(
              graph._c_graph, serialized, options, status)  # pylint: disable=protected-access
      except errors.InvalidArgumentError as e:
        # Convert to ValueError for backwards compatibility.
        raise ValueError(str(e))

    _ProcessNewOps(graph)

    # Create _DefinedFunctions for any imported functions.
    #
    # We do this by creating _DefinedFunctions directly from `graph_def`, and
    # adding them to `graph`. Adding an existing function to a TF_Graph is a
    # no-op, so this only has the effect of updating the Python state (usually
    # _DefinedFunction.add_to_graph also adds the function to the TF_Graph).
    #
    # TODO(skyewm): fetch the TF_Functions directly from the TF_Graph
    # TODO(skyewm): avoid sending serialized FunctionDefs back to the TF_Graph
    if graph_def.library and graph_def.library.function:
      # pylint: disable=protected-access
      functions = function._from_library(graph_def.library)
      for f in functions:
        f.add_to_graph(graph)
      # pylint: enable=protected-access

    # Treat input mappings that don't appear in the graph as an error, because
#.........这里部分代码省略.........
开发者ID:andrewharp,项目名称:tensorflow,代码行数:101,代码来源:importer.py

示例12: import_graph_def

def import_graph_def(graph_def,
                     input_map=None,
                     return_elements=None,
                     name=None,
                     op_dict=None,
                     producer_op_list=None):
  """Imports the graph from `graph_def` into the current default `Graph`.

  This function provides a way to import a serialized TensorFlow
  [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto)
  protocol buffer, and extract individual objects in the `GraphDef` as
  @{tf.Tensor} and @{tf.Operation} objects. Once extracted,
  these objects are placed into the current default `Graph`. See
  @{tf.Graph.as_graph_def} for a way to create a `GraphDef`
  proto.

  Args:
    graph_def: A `GraphDef` proto containing operations to be imported into
      the default graph.
    input_map: A dictionary mapping input names (as strings) in `graph_def`
      to `Tensor` objects. The values of the named input tensors in the
      imported graph will be re-mapped to the respective `Tensor` values.
    return_elements: A list of strings containing operation names in
      `graph_def` that will be returned as `Operation` objects; and/or
      tensor names in `graph_def` that will be returned as `Tensor` objects.
    name: (Optional.) A prefix that will be prepended to the names in
      `graph_def`. Note that this does not apply to imported function names.
      Defaults to `"import"`.
    op_dict: (Optional.) Deprecated, do not use.
    producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped)
      list of `OpDef`s used by the producer of the graph. If provided,
      unrecognized attrs for ops in `graph_def` that have their default value
      according to `producer_op_list` will be removed. This will allow some more
      `GraphDef`s produced by later binaries to be accepted by earlier binaries.

  Returns:
    A list of `Operation` and/or `Tensor` objects from the imported graph,
    corresponding to the names in `return_elements`.

  Raises:
    TypeError: If `graph_def` is not a `GraphDef` proto,
      `input_map` is not a dictionary mapping strings to `Tensor` objects,
      or `return_elements` is not a list of strings.
    ValueError: If `input_map`, or `return_elements` contains names that
      do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
      it refers to an unknown tensor).
  """
  op_dict = op_def_registry.get_registered_ops()

  graph_def = _ProcessGraphDefParam(graph_def, op_dict)
  input_map = _ProcessInputMapParam(input_map)
  return_elements = _ProcessReturnElementsParam(return_elements)

  if producer_op_list is not None:
    # TODO(skyewm): make a copy of graph_def so we're not mutating the argument?
    _RemoveDefaultAttrs(op_dict, producer_op_list, graph_def)

  graph = ops.get_default_graph()
  with ops.name_scope(name, 'import', input_map.values()) as scope:
    # Save unique prefix generated by name_scope
    if scope:
      assert scope.endswith('/')
      prefix = scope[:-1]
    else:
      prefix = ''

    # Generate any input map tensors inside name scope
    input_map = _ConvertInputMapValues(name, input_map)

  scoped_options = c_api_util.ScopedTFImportGraphDefOptions()
  options = scoped_options.options
  _PopulateTFImportGraphDefOptions(options, prefix, input_map,
                                   return_elements)

  # _ProcessNewOps mutates the new operations. _mutation_lock ensures a
  # Session.run call cannot occur between creating the TF_Operations in the
  # TF_GraphImportGraphDefWithResults call and mutating the them in
  # _ProcessNewOps.
  with graph._mutation_lock():  # pylint: disable=protected-access
    with c_api_util.tf_buffer(graph_def.SerializeToString()) as serialized:
      try:
        results = c_api.TF_GraphImportGraphDefWithResults(
            graph._c_graph, serialized, options)  # pylint: disable=protected-access
        results = c_api_util.ScopedTFImportGraphDefResults(results)
      except errors.InvalidArgumentError as e:
        # Convert to ValueError for backwards compatibility.
        raise ValueError(str(e))

    # Create _DefinedFunctions for any imported functions.
    #
    # We do this by creating _DefinedFunctions directly from `graph_def`, and
    # adding them to `graph`. Adding an existing function to a TF_Graph is a
    # no-op, so this only has the effect of updating the Python state (usually
    # _DefinedFunction.add_to_graph also adds the function to the TF_Graph).
    #
    # TODO(skyewm): fetch the TF_Functions directly from the TF_Graph
    # TODO(skyewm): avoid sending serialized FunctionDefs back to the TF_Graph
    # TODO(b/74620627): move this after _ProcessNewOps outside the lock once
    # _USE_C_SHAPES is removed.
    if graph_def.library and graph_def.library.function:
#.........这里部分代码省略.........
开发者ID:StephenOman,项目名称:tensorflow,代码行数:101,代码来源:importer.py

示例13: range

graph = tf.Graph()
with graph.as_default():
    for i in range(1000):  # such that we fill up the memory a bit
        #x = tf.placeholder(tf.float32)
        x = tf.constant(42)
        if i == 0:
            x_c_op = x.op._c_op

# New graph, such that we remove traces to graph. Also to fill some memory.
with tf.Graph().as_default():
    for i in range(1000):  # such that we fill up the memory a bit
        x = tf.placeholder(tf.float32)

# Fill some more memory.
a = [bytes([255] * 10000000) for i in range(10)]

del graph
del x
gc.collect()
gc.collect()

print(c_api.TF_OperationName(x_c_op))
print(c_api.TF_OperationOpType(x_c_op))
print(c_api.TF_OperationDevice(x_c_op))
print(c_api.TF_OperationNumOutputs(x_c_op))

with c_api_util.tf_buffer() as buf:
    c_api.TF_OperationToNodeDef(x_c_op, buf)

开发者ID:albertz,项目名称:playground,代码行数:28,代码来源:tf-crash-use-after-delete-graph.py


注:本文中的tensorflow.python.framework.c_api_util.tf_buffer函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。