当前位置: 首页>>代码示例>>Python>>正文


Python export.build_all_signature_defs函数代码示例

本文整理汇总了Python中tensorflow.python.estimator.export.export.build_all_signature_defs函数的典型用法代码示例。如果您正苦于以下问题:Python build_all_signature_defs函数的具体用法?Python build_all_signature_defs怎么用?Python build_all_signature_defs使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了build_all_signature_defs函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_build_all_signature_defs_serving_only

  def test_build_all_signature_defs_serving_only(self):
    receiver_tensor = {"input": array_ops.placeholder(dtypes.string)}
    output_1 = constant_op.constant([1.])
    export_outputs = {
        signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            export_output.PredictOutput(outputs=output_1),
        "train": export_output.TrainOutput(loss=output_1),
    }

    signature_defs = export.build_all_signature_defs(
        receiver_tensor, export_outputs)

    expected_signature_defs = {
        "serving_default": signature_def_utils.predict_signature_def(
            receiver_tensor, {"output": output_1})
    }

    self.assertDictEqual(expected_signature_defs, signature_defs)

    signature_defs = export.build_all_signature_defs(
        receiver_tensor, export_outputs, serving_only=False)

    expected_signature_defs.update({
        "train": signature_def_utils.supervised_train_signature_def(
            receiver_tensor, loss={"loss": output_1})
    })

    self.assertDictEqual(expected_signature_defs, signature_defs)
开发者ID:KiaraStarlab,项目名称:tensorflow,代码行数:28,代码来源:export_test.py

示例2: test_build_all_signature_defs_export_outputs_required

  def test_build_all_signature_defs_export_outputs_required(self):
    receiver_tensor = constant_op.constant(["11"])

    with self.assertRaises(ValueError) as e:
      export.build_all_signature_defs(receiver_tensor, None)

    self.assertEqual("export_outputs must be a dict.", str(e.exception))
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:7,代码来源:export_test.py

示例3: test_build_all_signature_defs_without_receiver_alternatives

  def test_build_all_signature_defs_without_receiver_alternatives(self):
    receiver_tensor = array_ops.placeholder(dtypes.string)
    output_1 = constant_op.constant([1.])
    output_2 = constant_op.constant(["2"])
    output_3 = constant_op.constant(["3"])
    export_outputs = {
        signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            export_output.RegressionOutput(value=output_1),
        "head-2": export_output.ClassificationOutput(classes=output_2),
        "head-3": export_output.PredictOutput(outputs={
            "some_output_3": output_3
        }),
    }

    signature_defs = export.build_all_signature_defs(
        receiver_tensor, export_outputs)

    expected_signature_defs = {
        "serving_default":
            signature_def_utils.regression_signature_def(receiver_tensor,
                                                         output_1),
        "head-2":
            signature_def_utils.classification_signature_def(receiver_tensor,
                                                             output_2, None),
        "head-3":
            signature_def_utils.predict_signature_def({
                "input": receiver_tensor
            }, {"some_output_3": output_3})
    }

    self.assertDictEqual(expected_signature_defs, signature_defs)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:31,代码来源:export_test.py

示例4: test_build_all_signature_defs_with_single_alternatives

  def test_build_all_signature_defs_with_single_alternatives(self):
    receiver_tensor = array_ops.placeholder(dtypes.string)
    receiver_tensors_alternative_1 = array_ops.placeholder(dtypes.int64)
    receiver_tensors_alternative_2 = array_ops.sparse_placeholder(
        dtypes.float32)
    # Note we are passing single Tensors as values of
    # receiver_tensors_alternatives, where normally that is a dict.
    # In this case a dict will be created using the default receiver tensor
    # name "input".
    receiver_tensors_alternatives = {"other1": receiver_tensors_alternative_1,
                                     "other2": receiver_tensors_alternative_2}
    output_1 = constant_op.constant([1.])
    output_2 = constant_op.constant(["2"])
    output_3 = constant_op.constant(["3"])
    export_outputs = {
        signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            export_output.RegressionOutput(value=output_1),
        "head-2": export_output.ClassificationOutput(classes=output_2),
        "head-3": export_output.PredictOutput(outputs={
            "some_output_3": output_3
        }),
    }

    signature_defs = export.build_all_signature_defs(
        receiver_tensor, export_outputs, receiver_tensors_alternatives)

    expected_signature_defs = {
        "serving_default":
            signature_def_utils.regression_signature_def(
                receiver_tensor,
                output_1),
        "head-2":
            signature_def_utils.classification_signature_def(
                receiver_tensor,
                output_2, None),
        "head-3":
            signature_def_utils.predict_signature_def(
                {"input": receiver_tensor},
                {"some_output_3": output_3}),
        "other1:head-3":
            signature_def_utils.predict_signature_def(
                {"input": receiver_tensors_alternative_1},
                {"some_output_3": output_3}),
        "other2:head-3":
            signature_def_utils.predict_signature_def(
                {"input": receiver_tensors_alternative_2},
                {"some_output_3": output_3})

        # Note that the alternatives 'other:serving_default' and 'other:head-2'
        # are invalid, because regession and classification signatures must take
        # a single string input.  Here we verify that these invalid signatures
        # are not included in the export.
    }

    self.assertDictEqual(expected_signature_defs, signature_defs)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:55,代码来源:export_test.py

示例5: _create_signature_def_map

def _create_signature_def_map(model, mode):
  """Create a SignatureDef map from a Keras model."""
  inputs_dict = {name: x for name, x in zip(model.input_names, model.inputs)}
  if model.optimizer:
    targets_dict = {x.name.split(':')[0]: x
                    for x in model.targets if x is not None}
    inputs_dict.update(targets_dict)
  outputs_dict = {name: x
                  for name, x in zip(model.output_names, model.outputs)}
  export_outputs = model_fn_lib.export_outputs_for_mode(
      mode,
      predictions=outputs_dict,
      loss=model.total_loss if model.optimizer else None,
      metrics=estimator_keras_util._convert_keras_metrics_to_estimator(model))
  return export_helpers.build_all_signature_defs(
      inputs_dict,
      export_outputs=export_outputs,
      serving_only=(mode == model_fn_lib.ModeKeys.PREDICT))
开发者ID:AnishShah,项目名称:tensorflow,代码行数:18,代码来源:keras_saved_model.py

示例6: _create_signature_def_map

def _create_signature_def_map(model, mode):
  """Create a SignatureDef map from a Keras model."""
  inputs_dict = {name: x for name, x in zip(model.input_names, model.inputs)}
  if model.optimizer:
    targets_dict = {x.name.split(':')[0]: x
                    for x in model.targets if x is not None}
    inputs_dict.update(targets_dict)
  outputs_dict = {name: x
                  for name, x in zip(model.output_names, model.outputs)}
  metrics = estimator_keras_util._convert_keras_metrics_to_estimator(model)

  # Add metric variables to the `LOCAL_VARIABLES` collection. Metric variables
  # are by default not added to any collections. We are doing this here, so
  # that metric variables get initialized.
  local_vars = set(ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES))
  vars_to_add = set()
  if metrics is not None:
    for key, value in six.iteritems(metrics):
      if isinstance(value, Metric):
        vars_to_add.update(value.variables)
        # Convert Metric instances to (value_tensor, update_op) tuple.
        metrics[key] = (value.result(), value.updates[0])
  # Remove variables that are in the local variables collection already.
  vars_to_add = vars_to_add.difference(local_vars)
  for v in vars_to_add:
    ops.add_to_collection(ops.GraphKeys.LOCAL_VARIABLES, v)

  export_outputs = model_fn_lib.export_outputs_for_mode(
      mode,
      predictions=outputs_dict,
      loss=model.total_loss if model.optimizer else None,
      metrics=metrics)
  return export_helpers.build_all_signature_defs(
      inputs_dict,
      export_outputs=export_outputs,
      serving_only=(mode == model_fn_lib.ModeKeys.PREDICT))
开发者ID:aeverall,项目名称:tensorflow,代码行数:36,代码来源:keras_saved_model.py

示例7: export_savedmodel

  def export_savedmodel(
      self, export_dir_base, serving_input_receiver_fn,
      assets_extra=None,
      as_text=False,
      checkpoint_path=None):
    """Exports inference graph as a SavedModel into given dir.

    This method builds a new graph by first calling the
    serving_input_receiver_fn to obtain feature `Tensor`s, and then calling
    this `Estimator`'s model_fn to generate the model graph based on those
    features. It restores the given checkpoint (or, lacking that, the most
    recent checkpoint) into this graph in a fresh session.  Finally it creates
    a timestamped export directory below the given export_dir_base, and writes
    a `SavedModel` into it containing a single `MetaGraphDef` saved from this
    session.

    The exported `MetaGraphDef` will provide one `SignatureDef` for each
    element of the export_outputs dict returned from the model_fn, named using
    the same keys.  One of these keys is always
    signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating which
    signature will be served when a serving request does not specify one.
    For each signature, the outputs are provided by the corresponding
    `ExportOutput`s, and the inputs are always the input receivers provided by
    the serving_input_receiver_fn.

    Extra assets may be written into the SavedModel via the extra_assets
    argument.  This should be a dict, where each key gives a destination path
    (including the filename) relative to the assets.extra directory.  The
    corresponding value gives the full path of the source file to be copied.
    For example, the simple case of copying a single file without renaming it
    is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`.

    Args:
      export_dir_base: A string containing a directory in which to create
        timestamped subdirectories containing exported SavedModels.
      serving_input_receiver_fn: A function that takes no argument and
        returns a `ServingInputReceiver`.
      assets_extra: A dict specifying how to populate the assets.extra directory
        within the exported SavedModel, or `None` if no extra assets are needed.
      as_text: whether to write the SavedModel proto in text format.
      checkpoint_path: The checkpoint path to export.  If `None` (the default),
        the most recent checkpoint found within the model directory is chosen.

    Returns:
      The string path to the exported directory.

    Raises:
      ValueError: if no serving_input_receiver_fn is provided, no export_outputs
          are provided, or no checkpoint can be found.
    """
    if serving_input_receiver_fn is None:
      raise ValueError('serving_input_receiver_fn must be defined.')

    with ops.Graph().as_default() as g:
      self._create_and_assert_global_step(g)
      random_seed.set_random_seed(self._config.tf_random_seed)
      serving_input_receiver = serving_input_receiver_fn()

      # Call the model_fn and collect the export_outputs.
      estimator_spec = self._call_model_fn(
          features=serving_input_receiver.features,
          labels=None,
          mode=model_fn_lib.ModeKeys.PREDICT,
          config=self.config)

      # Build the SignatureDefs from receivers and all outputs
      signature_def_map = build_all_signature_defs(
          serving_input_receiver.receiver_tensors,
          estimator_spec.export_outputs,
          serving_input_receiver.receiver_tensors_alternatives)

      if not checkpoint_path:
        # Locate the latest checkpoint
        checkpoint_path = saver.latest_checkpoint(self._model_dir)
      if not checkpoint_path:
        raise ValueError("Couldn't find trained model at %s." % self._model_dir)

      export_dir = get_timestamped_export_dir(export_dir_base)
      temp_export_dir = get_temp_export_dir(export_dir)

      # TODO(soergel): Consider whether MonitoredSession makes sense here
      with tf_session.Session() as session:

        saver_for_restore = estimator_spec.scaffold.saver or saver.Saver(
            sharded=True)
        saver_for_restore.restore(session, checkpoint_path)

        # TODO(b/36111876): replace legacy_init_op with main_op mechanism
        # pylint: disable=protected-access
        local_init_op = (
            estimator_spec.scaffold.local_init_op or
            monitored_session.Scaffold._default_local_init_op())
        # pylint: enable=protected-access

        # Perform the export
        builder = saved_model_builder.SavedModelBuilder(temp_export_dir)
        builder.add_meta_graph_and_variables(
            session, [tag_constants.SERVING],
            signature_def_map=signature_def_map,
            assets_collection=ops.get_collection(
#.........这里部分代码省略.........
开发者ID:ilya-edrenkin,项目名称:tensorflow,代码行数:101,代码来源:estimator.py


注:本文中的tensorflow.python.estimator.export.export.build_all_signature_defs函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。