当前位置: 首页>>代码示例>>Python>>正文


Python context.eager_mode函数代码示例

本文整理汇总了Python中tensorflow.python.eager.context.eager_mode函数的典型用法代码示例。如果您正苦于以下问题:Python eager_mode函数的具体用法?Python eager_mode怎么用?Python eager_mode使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了eager_mode函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_graph_mode_isolation

 def test_graph_mode_isolation(self):
   with context.graph_mode():
     # Even if we've (accidentally) called IsolateTest in Graph mode, it should
     # provide Eager isolation.
     with test_util.IsolateTest():
       with context.eager_mode():
         first_container_variable = resource_variable_ops.ResourceVariable(
             name="first_container_variable",
             initial_value=1)
     with context.eager_mode():
       with self.assertRaises(ValueError):
         first_container_variable.read_value()
开发者ID:SylChan,项目名称:tensorflow,代码行数:12,代码来源:test_util_test.py

示例2: testIteratorResourceCleanup

 def testIteratorResourceCleanup(self):
   filename = os.path.join(self.get_temp_dir(), "text.txt")
   with open(filename, "wt") as f:
     for i in range(3):
       f.write("%d\n" % (i,))
   with context.eager_mode():
     first_iterator = iter(readers.TextLineDataset(filename))
     self.assertEqual(b"0", next(first_iterator).numpy())
     second_iterator = iter(readers.TextLineDataset(filename))
     self.assertEqual(b"0", next(second_iterator).numpy())
     # Eager kernel caching is based on op attributes, which includes the
     # Dataset's output shape. Create a different kernel to test that they
     # don't create resources with the same names.
     different_kernel_iterator = iter(
         readers.TextLineDataset(filename).repeat().batch(16))
     self.assertEqual([16], next(different_kernel_iterator).shape)
     # Remove our references to the Python Iterator objects, which (assuming no
     # reference cycles) is enough to trigger DestroyResourceOp and close the
     # partially-read files.
     del first_iterator
     del second_iterator
     del different_kernel_iterator
     if not psutil_import_succeeded:
       self.skipTest(
           "psutil is required to check that we've closed our files.")
     open_files = psutil.Process().open_files()
     self.assertNotIn(filename, [open_file.path for open_file in open_files])
开发者ID:clsung,项目名称:tensorflow,代码行数:27,代码来源:reader_dataset_ops_test.py

示例3: testAnonymousVarsInInit

  def testAnonymousVarsInInit(self):

    class Model(training.Model):

      def __init__(self):
        super(Model, self).__init__()
        self.w = resource_variable_ops.ResourceVariable(0.0)
        self.b = resource_variable_ops.ResourceVariable(0.0)
        self.vars = [self.w, self.b]

      def call(self, x):
        return x * self.w + self.b

    with context.eager_mode():
      model = Model()
      optimizer = adam.AdamOptimizer(learning_rate=0.05)
      checkpoint_directory = self.get_temp_dir()
      checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
      checkpoint = util.Checkpoint(
          model=model, optimizer=optimizer)
      for _ in range(2):
        checkpoint.save(checkpoint_prefix)
        with backprop.GradientTape() as tape:
          loss = (constant_op.constant(1.)
                  - model(constant_op.constant(1.))) ** 2
        grad = tape.gradient(loss, model.vars)
        optimizer.apply_gradients(
            [(g, v) for g, v in zip(grad, model.vars)])
开发者ID:jackd,项目名称:tensorflow,代码行数:28,代码来源:checkpointable_utils_test.py

示例4: test_callable_evaluate

 def test_callable_evaluate(self):
   def model():
     return resource_variable_ops.ResourceVariable(
         name="same_name",
         initial_value=1) + 1
   with context.eager_mode():
     self.assertEqual(2, self.evaluate(model))
开发者ID:LiuCKind,项目名称:tensorflow,代码行数:7,代码来源:test_util_test.py

示例5: test_flatten

 def test_flatten(self):
   """Test invoking Flatten in eager mode."""
   with context.eager_mode():
     with tfe.IsolateTest():
       input = np.random.rand(5, 10, 4).astype(np.float32)
       result = layers.Flatten()(input)
       assert result.shape == (5, 40)
开发者ID:AhlamMD,项目名称:deepchem,代码行数:7,代码来源:test_layers_eager.py

示例6: test_vina_free_energy

  def test_vina_free_energy(self):
    """Test invoking VinaFreeEnergy in eager mode."""
    with context.eager_mode():
      with tfe.IsolateTest():
        n_atoms = 5
        m_nbrs = 1
        ndim = 3
        nbr_cutoff = 1
        start = 0
        stop = 4
        X = np.random.rand(n_atoms, ndim).astype(np.float32)
        Z = np.random.randint(0, 2, (n_atoms)).astype(np.float32)
        layer = layers.VinaFreeEnergy(n_atoms, m_nbrs, ndim, nbr_cutoff, start,
                                      stop)
        result = layer(X, Z)
        assert len(layer.variables) == 6
        assert result.shape == tuple()

        # Creating a second layer should produce different results, since it has
        # different random weights.

        layer2 = layers.VinaFreeEnergy(n_atoms, m_nbrs, ndim, nbr_cutoff, start,
                                       stop)
        result2 = layer2(X, Z)
        assert not np.allclose(result, result2)

        # But evaluating the first layer again should produce the same result as before.

        result3 = layer(X, Z)
        assert np.allclose(result, result3)
开发者ID:AhlamMD,项目名称:deepchem,代码行数:30,代码来源:test_layers_eager.py

示例7: test_max_pool_1d

 def test_max_pool_1d(self):
   """Test invoking MaxPool1D in eager mode."""
   with context.eager_mode():
     with tfe.IsolateTest():
       input = np.random.rand(4, 6, 8).astype(np.float32)
       result = layers.MaxPool1D(strides=2)(input)
       assert result.shape == (4, 3, 8)
开发者ID:AhlamMD,项目名称:deepchem,代码行数:7,代码来源:test_layers_eager.py

示例8: test_constant

 def test_constant(self):
   """Test invoking Constant in eager mode."""
   with context.eager_mode():
     with tfe.IsolateTest():
       value = np.random.rand(5, 4).astype(np.float32)
       result = layers.Constant(value)()
       assert np.array_equal(result, value)
开发者ID:AhlamMD,项目名称:deepchem,代码行数:7,代码来源:test_layers_eager.py

示例9: from_saved_model

  def from_saved_model(cls, saved_model_dir, signature_keys=None, tags=None):
    """Creates a TFLiteConverter object from a SavedModel directory.

    Args:
      saved_model_dir: SavedModel directory to convert.
      signature_keys: List of keys identifying SignatureDef containing inputs
        and outputs. Elements should not be duplicated. By default the
        `signatures` attribute of the MetaGraphdef is used. (default
        saved_model.signatures)
      tags: Set of tags identifying the MetaGraphDef within the SavedModel to
        analyze. All tags in the tag set must be present. (default set(SERVING))

    Returns:
      TFLiteConverter object.

    Raises:
      Invalid signature keys.
    """
    # Ensures any graphs created in Eager mode are able to run. This is required
    # in order to create a tf.estimator.Exporter that exports a TFLite model.
    with context.eager_mode():
      saved_model = _load(saved_model_dir, tags)
    if not signature_keys:
      signature_keys = saved_model.signatures

    funcs = []
    for key in signature_keys:
      if key not in saved_model.signatures:
        raise ValueError("Invalid signature key '{}' found. Valid keys are "
                         "'{}'.".format(key, ",".join(saved_model.signatures)))
      funcs.append(saved_model.signatures[key])

    return cls(funcs, saved_model)
开发者ID:aritratony,项目名称:tensorflow,代码行数:33,代码来源:lite.py

示例10: compute_output_shape

  def compute_output_shape(self, input_shape):
    if self._output_shape is None:
      # Make use of existing autocomputation but provide Lambda-specific
      # error message. This is always safe to run even when the outer context
      # is Graph mode because Lambda layers don't have side effects such as
      # `add_loss`.
      with context.eager_mode():
        try:
          return super(Lambda, self).compute_output_shape(input_shape)
        except NotImplementedError:
          raise NotImplementedError(
              'We could not automatically infer the shape of the Lambda\'s '
              'output. Please specify `output_shape` for this Lambda.')

    if callable(self._output_shape):
      output_shapes = self._output_shape(input_shape)
      return tf_utils.convert_shapes(output_shapes, to_tuples=False)

    # Output shapes are passed directly and don't include batch dimension.
    input_tensor_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)
    batch_size = nest.flatten(input_tensor_shape)[0][0] if input_shape else None

    def _add_batch(shape):
      return tensor_shape.TensorShape([batch_size] + shape.as_list())

    output_shapes = tf_utils.convert_shapes(self._output_shape, to_tuples=False)
    return nest.map_structure(_add_batch, output_shapes)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:27,代码来源:core.py

示例11: testDatasetEagerIteration

 def testDatasetEagerIteration(self, execution_mode):
   with context.eager_mode(), context.execution_mode(execution_mode):
     val = 0
     dataset = dataset_ops.Dataset.range(10)
     for foo in dataset:
       self.assertEqual(val, foo.numpy())
       val += 1
开发者ID:aritratony,项目名称:tensorflow,代码行数:7,代码来源:dataset_test.py

示例12: decorated

    def decorated(self, **kwargs):
      """Decorated the test method."""
      with context.graph_mode():
        with self.test_session(graph, config, use_gpu, force_gpu):
          f(self, **kwargs)

      if reset_test:
        # This decorator runs the wrapped test twice.
        # Reset the test environment between runs.
        self.tearDown()
        self.setUp()

      def run_eager_mode(self, **kwargs):
        if force_gpu:
          gpu_name = gpu_device_name()
          if not gpu_name:
            gpu_name = "/device:GPU:0"
          with context.device(gpu_name):
            f(self)
        elif use_gpu:
          # TODO(xpan): Support softplacement and gpu by default when available.
          f(self, **kwargs)
        else:
          with context.device("/device:CPU:0"):
            f(self, **kwargs)

      if assert_no_eager_garbage:
        run_eager_mode = assert_no_new_tensors(
            assert_no_garbage_created(run_eager_mode))

      with context.eager_mode():
        with IsolateTest():
          run_eager_mode(self, **kwargs)
开发者ID:Lin-jipeng,项目名称:tensorflow,代码行数:33,代码来源:test_util.py

示例13: testAssignDifferentShapesEager

 def testAssignDifferentShapesEager(self):
   with context.eager_mode():
     with variable_scope.variable_scope("foo"):
       var = variable_scope.get_variable("x", shape=[1, 1],
                                         dtype=dtypes.float32)
       assign = var.assign(np.zeros(shape=[2, 2]))
       self.evaluate(assign)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:7,代码来源:resource_variable_ops_test.py

示例14: testSlotsUniqueEager

  def testSlotsUniqueEager(self):
    with context.eager_mode():
      v1 = variables.Variable(1.)
      v2 = variables.Variable(1.)

      opt = rmsprop.RMSprop(1., momentum=0., centered=False)
      opt.minimize(lambda: v1 + v2, var_list=[v1, v2])
      # There should be iteration, and one unique slot variable for v1 and v2.
      self.assertEqual(3, len(set(opt.variables())))
      self.assertEqual(
          self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))

      opt = rmsprop.RMSprop(learning_rate=1., momentum=0.2, centered=False)
      opt.minimize(lambda: v1 + v2, var_list=[v1, v2])
      # There should be iteration, and two unique slot variables for v1 and v2.
      self.assertEqual(5, len(set(opt.variables())))
      self.assertEqual(
          self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))

      opt = rmsprop.RMSprop(learning_rate=1., momentum=0.2, centered=True)
      opt.minimize(lambda: v1 + v2, var_list=[v1, v2])
      # There should be iteration, and three unique slot variables for v1 and v2
      self.assertEqual(7, len(set(opt.variables())))
      self.assertEqual(
          self.evaluate(opt.variables()[0]), self.evaluate(opt.iterations))
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:25,代码来源:rmsprop_test.py

示例15: test_lstm

  def test_lstm(self):
    """Test invoking LSTM in eager mode."""
    with context.eager_mode():
      with tfe.IsolateTest():
        batch_size = 10
        n_hidden = 7
        in_channels = 4
        n_steps = 6
        input = np.random.rand(batch_size, n_steps, in_channels).astype(
            np.float32)
        layer = layers.LSTM(n_hidden, batch_size)
        result, state = layer(input)
        assert result.shape == (batch_size, n_steps, n_hidden)
        assert len(layer.variables) == 2

        # Creating a second layer should produce different results, since it has
        # different random weights.

        layer2 = layers.LSTM(n_hidden, batch_size)
        result2, state2 = layer2(input)
        assert not np.allclose(result, result2)

        # But evaluating the first layer again should produce the same result as before.

        result3, state3 = layer(input)
        assert np.allclose(result, result3)

        # But if we specify a different starting state, that should produce a
        # different result.

        result4, state4 = layer(input, initial_state=state3)
        assert not np.allclose(result, result4)
开发者ID:AhlamMD,项目名称:deepchem,代码行数:32,代码来源:test_layers_eager.py


注:本文中的tensorflow.python.eager.context.eager_mode函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。