当前位置: 首页>>代码示例>>Python>>正文


Python debugger_cli_common.rich_text_lines_from_rich_line_list函数代码示例

本文整理汇总了Python中tensorflow.python.debug.cli.debugger_cli_common.rich_text_lines_from_rich_line_list函数的典型用法代码示例。如果您正苦于以下问题:Python rich_text_lines_from_rich_line_list函数的具体用法?Python rich_text_lines_from_rich_line_list怎么用?Python rich_text_lines_from_rich_line_list使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了rich_text_lines_from_rich_line_list函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _node_status_label_legend

  def _node_status_label_legend(self):
    """Get legend for node-status labels.

    Returns:
      (debugger_cli_common.RichTextLines) Legend text.
    """

    return debugger_cli_common.rich_text_lines_from_rich_line_list([
        RL(""),
        RL("Legend:"),
        (RL("  ") +
         RL(self.STATE_IS_PLACEHOLDER,
            self._STATE_COLORS[self.STATE_IS_PLACEHOLDER]) +
         " - Placeholder"),
        (RL("  ") +
         RL(self.STATE_UNFEEDABLE,
            self._STATE_COLORS[self.STATE_UNFEEDABLE]) +
         " - Unfeedable"),
        (RL("  ") +
         RL(self.STATE_CONT,
            self._STATE_COLORS[self.STATE_CONT]) +
         " - Already continued-to; Tensor handle available from output "
         "slot(s)"),
        (RL("  ") +
         RL(self.STATE_DUMPED_INTERMEDIATE,
            self._STATE_COLORS[self.STATE_DUMPED_INTERMEDIATE]) +
         " - Unfeedable"),
        (RL("  ") +
         RL(self.STATE_OVERRIDDEN,
            self._STATE_COLORS[self.STATE_OVERRIDDEN]) +
         " - Has overriding (injected) tensor value"),
        (RL("  ") +
         RL(self.STATE_DIRTY_VARIABLE,
            self._STATE_COLORS[self.STATE_DIRTY_VARIABLE]) +
         " - Dirty variable: Variable already updated this node stepper.")])
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:35,代码来源:stepper_cli.py

示例2: _render_node_traceback

  def _render_node_traceback(self, node_name):
    """Render traceback of a node's creation in Python, if available.

    Args:
      node_name: (str) name of the node.

    Returns:
      A RichTextLines object containing the stack trace of the node's
      construction.
    """

    lines = [RL(""), RL(""), RL("Traceback of node construction:", "bold")]

    try:
      node_stack = self._debug_dump.node_traceback(node_name)
      for depth, (file_path, line, function_name, text) in enumerate(
          node_stack):
        lines.append("%d: %s" % (depth, file_path))

        attribute = debugger_cli_common.MenuItem(
            "", "ps %s -b %d" % (file_path, line)) if text else None
        line_number_line = RL("  ")
        line_number_line += RL("Line:     %d" % line, attribute)
        lines.append(line_number_line)

        lines.append("  Function: %s" % function_name)
        lines.append("  Text:     " + (("\"%s\"" % text) if text else "None"))
        lines.append("")
    except KeyError:
      lines.append("(Node unavailable in the loaded Python graph)")
    except LookupError:
      lines.append("(Unavailable because no Python graph has been loaded)")

    return debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
开发者ID:brainwy12,项目名称:tensorflow,代码行数:34,代码来源:analyzer_cli.py

示例3: get_error_intro

def get_error_intro(tf_error):
  """Generate formatted intro for TensorFlow run-time error.

  Args:
    tf_error: (errors.OpError) TensorFlow run-time error object.

  Returns:
    (RichTextLines) Formatted intro message about the run-time OpError, with
      sample commands for debugging.
  """

  if hasattr(tf_error, "op") and hasattr(tf_error.op, "name"):
    op_name = tf_error.op.name
  else:
    op_name = None

  intro_lines = [
      "--------------------------------------",
      RL("!!! An error occurred during the run !!!", "blink"),
      "",
  ]

  out = debugger_cli_common.rich_text_lines_from_rich_line_list(intro_lines)

  if op_name is not None:
    out.extend(debugger_cli_common.RichTextLines(
        ["You may use the following commands to debug:"]))
    out.extend(
        _recommend_command("ni -a -d -t %s" % op_name,
                           "Inspect information about the failing op.",
                           create_link=True))
    out.extend(
        _recommend_command("li -r %s" % op_name,
                           "List inputs to the failing op, recursively.",
                           create_link=True))

    out.extend(
        _recommend_command(
            "lt",
            "List all tensors dumped during the failing run() call.",
            create_link=True))
  else:
    out.extend(debugger_cli_common.RichTextLines([
        "WARNING: Cannot determine the name of the op that caused the error."]))

  more_lines = [
      "",
      "Op name:    %s" % op_name,
      "Error type: " + str(type(tf_error)),
      "",
      "Details:",
      str(tf_error),
      "",
      "--------------------------------------",
      "",
  ]

  out.extend(debugger_cli_common.RichTextLines(more_lines))

  return out
开发者ID:AnishShah,项目名称:tensorflow,代码行数:60,代码来源:cli_shared.py

示例4: _recommend_command

def _recommend_command(command, description, indent=2, create_link=False):
  """Generate a RichTextLines object that describes a recommended command.

  Args:
    command: (str) The command to recommend.
    description: (str) A description of what the command does.
    indent: (int) How many spaces to indent in the beginning.
    create_link: (bool) Whether a command link is to be applied to the command
      string.

  Returns:
    (RichTextLines) Formatted text (with font attributes) for recommending the
      command.
  """

  indent_str = " " * indent

  if create_link:
    font_attr = [debugger_cli_common.MenuItem("", command), "bold"]
  else:
    font_attr = "bold"

  lines = [RL(indent_str) + RL(command, font_attr) + ":",
           indent_str + "  " + description]

  return debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
开发者ID:LUTAN,项目名称:tensorflow,代码行数:26,代码来源:cli_shared.py

示例5: _counts_summary

  def _counts_summary(counts, skip_zeros=True, total_count=None):
    """Format values as a two-row table."""
    if skip_zeros:
      counts = [(count_key, count_val) for count_key, count_val in counts
                if count_val]
    max_common_len = 0
    for count_key, count_val in counts:
      count_val_str = str(count_val)
      common_len = max(len(count_key) + 1, len(count_val_str) + 1)
      max_common_len = max(common_len, max_common_len)

    key_line = debugger_cli_common.RichLine("|")
    val_line = debugger_cli_common.RichLine("|")
    for count_key, count_val in counts:
      count_val_str = str(count_val)
      key_line += _pad_string_to_length(count_key, max_common_len)
      val_line += _pad_string_to_length(count_val_str, max_common_len)
    key_line += " |"
    val_line += " |"

    if total_count is not None:
      total_key_str = "total"
      total_val_str = str(total_count)
      max_common_len = max(len(total_key_str) + 1, len(total_val_str))
      total_key_str = _pad_string_to_length(total_key_str, max_common_len)
      total_val_str = _pad_string_to_length(total_val_str, max_common_len)
      key_line += total_key_str + " |"
      val_line += total_val_str + " |"

    return debugger_cli_common.rich_text_lines_from_rich_line_list(
        [key_line, val_line])
开发者ID:NevesLucas,项目名称:tensorflow,代码行数:31,代码来源:tensor_format.py

示例6: list_sorted_nodes

  def list_sorted_nodes(self, args, screen_info=None):
    """List the sorted transitive closure of the stepper's fetches."""

    # TODO(cais): Use pattern such as del args, del screen_info python/debug.
    _ = args
    _ = screen_info

    parsed = self.arg_parsers["list_sorted_nodes"].parse_args(args)

    if parsed.lower_bound != -1 and parsed.upper_bound != -1:
      index_range = [
          max(0, parsed.lower_bound),
          min(len(self._sorted_nodes), parsed.upper_bound)
      ]
      verbose = False
    else:
      index_range = [0, len(self._sorted_nodes)]
      verbose = True

    handle_node_names = self._node_stepper.handle_node_names()
    intermediate_tensor_names = self._node_stepper.intermediate_tensor_names()
    override_names = self._node_stepper.override_names()
    dirty_variable_names = [
        dirty_variable.split(":")[0]
        for dirty_variable in self._node_stepper.dirty_variables()
    ]

    lines = []
    if verbose:
      lines.extend(
          ["Topologically-sorted transitive input(s) and fetch(es):", ""])

    output = debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
    self._add_deprecation_warning(output)

    for i, element_name in enumerate(self._sorted_nodes):
      if i < index_range[0] or i >= index_range[1]:
        continue

      # TODO(cais): Use fixed-width text to show node index.
      if i == self._next:
        node_prefix = RL("  ") + RL(self.NEXT_NODE_POINTER_STR, "bold")
      else:
        node_prefix = RL("     ")

      node_prefix += "(%d / %d)" % (i + 1, len(self._sorted_nodes)) + "  ["
      node_prefix += self._get_status_labels(
          element_name,
          handle_node_names,
          intermediate_tensor_names,
          override_names,
          dirty_variable_names)

      output.append_rich_line(node_prefix + "] " + element_name)

    if verbose:
      output.extend(self._node_status_label_legend())

    return output
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:59,代码来源:stepper_cli.py

示例7: print_source

  def print_source(self, args, screen_info=None):
    """Print the content of a source file."""
    del screen_info  # Unused.

    parsed = self._arg_parsers["print_source"].parse_args(args)

    source_annotation = source_utils.annotate_source(
        self._debug_dump,
        parsed.source_file_path,
        do_dumped_tensors=parsed.tensors,
        min_line=parsed.line_begin)

    with open(parsed.source_file_path, "rU") as f:
      source_text = f.read()

    source_lines = source_text.split("\n")
    num_lines = len(source_lines)
    line_num_width = int(np.ceil(np.log10(num_lines))) + 3

    labeled_source_lines = []
    if parsed.line_begin > 1:
      labeled_source_lines.append(
          RL("(... Omitted %d source lines ...)" % (parsed.line_begin - 1),
             "bold"))

    for i, line in enumerate(source_lines[parsed.line_begin - 1:]):
      annotated_line = RL("L%d" % (i + parsed.line_begin), "yellow")
      annotated_line += " " * (line_num_width - len(annotated_line))
      annotated_line += line
      labeled_source_lines.append(annotated_line)

      if i + parsed.line_begin in source_annotation:
        sorted_elements = sorted(source_annotation[i + parsed.line_begin])
        for k, element in enumerate(sorted_elements):
          if k >= parsed.max_elements_per_line:
            labeled_source_lines.append(
                "    (... Omitted %d of %d %s ...)" % (
                    len(sorted_elements) - parsed.max_elements_per_line,
                    len(sorted_elements),
                    "tensor(s)" if parsed.tensors else "op(s)"))
            break

          label = RL(" " * 4)
          if self._debug_dump.debug_watch_keys(
              debug_data.get_node_name(element)):
            attribute = debugger_cli_common.MenuItem("", "pt %s" % element)
          else:
            attribute = "blue"

          label += RL(element, attribute)
          labeled_source_lines.append(label)

    output = debugger_cli_common.rich_text_lines_from_rich_line_list(
        labeled_source_lines)
    _add_main_menu(output, node_name=None)
    return output
开发者ID:brainwy12,项目名称:tensorflow,代码行数:56,代码来源:analyzer_cli.py

示例8: get_error_intro

def get_error_intro(tf_error):
  """Generate formatted intro for TensorFlow run-time error.

  Args:
    tf_error: (errors.OpError) TensorFlow run-time error object.

  Returns:
    (RichTextLines) Formatted intro message about the run-time OpError, with
      sample commands for debugging.
  """

  op_name = tf_error.op.name

  intro_lines = [
      "--------------------------------------",
      RL("!!! An error occurred during the run !!!", "blink"),
      "",
      "You may use the following commands to debug:",
  ]

  out = debugger_cli_common.rich_text_lines_from_rich_line_list(intro_lines)

  out.extend(
      _recommend_command("ni -a -d -t %s" % op_name,
                         "Inspect information about the failing op.",
                         create_link=True))
  out.extend(
      _recommend_command("li -r %s" % op_name,
                         "List inputs to the failing op, recursively.",
                         create_link=True))

  out.extend(
      _recommend_command(
          "lt",
          "List all tensors dumped during the failing run() call.",
          create_link=True))

  more_lines = [
      "",
      "Op name:    " + op_name,
      "Error type: " + str(type(tf_error)),
      "",
      "Details:",
      str(tf_error),
      "",
      "WARNING: Using client GraphDef due to the error, instead of "
      "executor GraphDefs.",
      "--------------------------------------",
      "",
  ]

  out.extend(debugger_cli_common.RichTextLines(more_lines))

  return out
开发者ID:LUTAN,项目名称:tensorflow,代码行数:54,代码来源:cli_shared.py

示例9: error

def error(msg):
  """Generate a RichTextLines output for error.

  Args:
    msg: (str) The error message.

  Returns:
    (debugger_cli_common.RichTextLines) A representation of the error message
      for screen output.
  """

  return debugger_cli_common.rich_text_lines_from_rich_line_list([
      RL("ERROR: " + msg, COLOR_RED)])
开发者ID:LUTAN,项目名称:tensorflow,代码行数:13,代码来源:cli_shared.py

示例10: render

  def render(self,
             max_length,
             backward_command,
             forward_command,
             latest_command_attribute="black_on_white",
             old_command_attribute="magenta_on_white"):
    """Render the rich text content of the single-line navigation bar.

    Args:
      max_length: (`int`) Maximum length of the navigation bar, in characters.
      backward_command: (`str`) command for going backward. Used to construct
        the shortcut menu item.
      forward_command: (`str`) command for going forward. Used to construct the
        shortcut menu item.
       latest_command_attribute: font attribute for lastest command.
       old_command_attribute: font attribute for old (non-latest) command.

    Returns:
      (`debugger_cli_common.RichTextLines`) the navigation bar text with
        attributes.

    """
    output = RL("| ")
    output += RL(
        self.BACK_ARROW_TEXT,
        (debugger_cli_common.MenuItem(None, backward_command)
         if self.can_go_back() else None))
    output += RL(" ")
    output += RL(
        self.FORWARD_ARROW_TEXT,
        (debugger_cli_common.MenuItem(None, forward_command)
         if self.can_go_forward() else None))

    if self._items:
      command_attribute = (latest_command_attribute
                           if (self._pointer == (len(self._items) - 1))
                           else old_command_attribute)
      output += RL(" | ")
      if self._pointer != len(self._items) - 1:
        output += RL("(-%d) " % (len(self._items) - 1 - self._pointer),
                     command_attribute)

      if len(output) < max_length:
        maybe_truncated_command = self._items[self._pointer].command[
            :(max_length - len(output))]
        output += RL(maybe_truncated_command, command_attribute)

    return debugger_cli_common.rich_text_lines_from_rich_line_list([output])
开发者ID:1000sprites,项目名称:tensorflow,代码行数:48,代码来源:curses_widgets.py

示例11: summarize

  def summarize(self, highlight=None):
    """Get a text summary of the config.

    Args:
      highlight: A property name to highlight in the output.

    Returns:
      A `RichTextLines` output.
    """
    lines = [RL("Command-line configuration:", "bold"), RL("")]
    for name, val in self._config.items():
      highlight_attr = "bold" if name == highlight else None
      line = RL("  ")
      line += RL(name, ["underline", highlight_attr])
      line += RL(": ")
      line += RL(str(val), font_attr=highlight_attr)
      lines.append(line)
    return debugger_cli_common.rich_text_lines_from_rich_line_list(lines)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:18,代码来源:cli_config.py

示例12: _report_last_updated

  def _report_last_updated(self):
    """Generate a report of the variables updated in the last cont/step call.

    Returns:
      (debugger_cli_common.RichTextLines) A RichTextLines representation of the
        variables updated in the last cont/step call.
    """

    last_updated = self._node_stepper.last_updated()
    if not last_updated:
      return debugger_cli_common.RichTextLines([])

    rich_lines = [RL("Updated:", self._UPDATED_ATTRIBUTE)]
    sorted_last_updated = sorted(list(last_updated))
    for updated in sorted_last_updated:
      rich_lines.append(RL("  %s" % updated))
    rich_lines.append(RL(""))
    return debugger_cli_common.rich_text_lines_from_rich_line_list(rich_lines)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:18,代码来源:stepper_cli.py

示例13: _report_last_feed_types

  def _report_last_feed_types(self):
    """Generate a report of the feed types used in the cont/step call.

    Returns:
      (debugger_cli_common.RichTextLines) A RichTextLines representation of the
        feeds used in the last cont/step call.
    """
    feed_types = self._node_stepper.last_feed_types()

    out = ["Stepper used feeds:"]
    if feed_types:
      for feed_name in feed_types:
        feed_info = RL("  %s : " % feed_name)
        feed_info += RL(feed_types[feed_name],
                        self._FEED_COLORS[feed_types[feed_name]])
        out.append(feed_info)
    else:
      out.append("  (No feeds)")
    out.append("")

    return debugger_cli_common.rich_text_lines_from_rich_line_list(out)
开发者ID:adit-chandra,项目名称:tensorflow,代码行数:21,代码来源:stepper_cli.py

示例14: _get_list_profile_lines

  def _get_list_profile_lines(
      self, device_name, device_index, device_count,
      profile_datum_list, sort_by, sort_reverse, time_unit,
      device_name_filter=None, node_name_filter=None, op_type_filter=None,
      screen_cols=80):
    """Get `RichTextLines` object for list_profile command for a given device.

    Args:
      device_name: (string) Device name.
      device_index: (int) Device index.
      device_count: (int) Number of devices.
      profile_datum_list: List of `ProfileDatum` objects.
      sort_by: (string) Identifier of column to sort. Sort identifier
          must match value of SORT_OPS_BY_OP_NAME, SORT_OPS_BY_OP_TYPE,
          SORT_OPS_BY_EXEC_TIME, SORT_OPS_BY_MEMORY or SORT_OPS_BY_LINE.
      sort_reverse: (bool) Whether to sort in descending instead of default
          (ascending) order.
      time_unit: time unit, must be in cli_shared.TIME_UNITS.
      device_name_filter: Regular expression to filter by device name.
      node_name_filter: Regular expression to filter by node name.
      op_type_filter: Regular expression to filter by op type.
      screen_cols: (int) Number of columns available on the screen (i.e.,
        available screen width).

    Returns:
      `RichTextLines` object containing a table that displays profiling
      information for each op.
    """
    profile_data = ProfileDataTableView(profile_datum_list, time_unit=time_unit)

    # Calculate total time early to calculate column widths.
    total_op_time = sum(datum.op_time for datum in profile_datum_list)
    total_exec_time = sum(datum.node_exec_stats.all_end_rel_micros
                          for datum in profile_datum_list)
    device_total_row = [
        "Device Total", "",
        cli_shared.time_to_readable_str(total_op_time,
                                        force_time_unit=time_unit),
        cli_shared.time_to_readable_str(total_exec_time,
                                        force_time_unit=time_unit)]

    # Calculate column widths.
    column_widths = [
        len(column_name) for column_name in profile_data.column_names()]
    for col in range(len(device_total_row)):
      column_widths[col] = max(column_widths[col], len(device_total_row[col]))
    for col in range(len(column_widths)):
      for row in range(profile_data.row_count()):
        column_widths[col] = max(
            column_widths[col], len(profile_data.value(
                row,
                col,
                device_name_filter=device_name_filter,
                node_name_filter=node_name_filter,
                op_type_filter=op_type_filter)))
      column_widths[col] += 2  # add margin between columns

    # Add device name.
    output = [RL("-" * screen_cols)]
    device_row = "Device %d of %d: %s" % (
        device_index + 1, device_count, device_name)
    output.append(RL(device_row))
    output.append(RL())

    # Add headers.
    base_command = "list_profile"
    row = RL()
    for col in range(profile_data.column_count()):
      column_name = profile_data.column_names()[col]
      sort_id = profile_data.column_sort_id(col)
      command = "%s -s %s" % (base_command, sort_id)
      if sort_by == sort_id and not sort_reverse:
        command += " -r"
      head_menu_item = debugger_cli_common.MenuItem(None, command)
      row += RL(column_name, font_attr=[head_menu_item, "bold"])
      row += RL(" " * (column_widths[col] - len(column_name)))

    output.append(row)

    # Add data rows.
    for row in range(profile_data.row_count()):
      new_row = RL()
      for col in range(profile_data.column_count()):
        new_cell = profile_data.value(
            row,
            col,
            device_name_filter=device_name_filter,
            node_name_filter=node_name_filter,
            op_type_filter=op_type_filter)
        new_row += new_cell
        new_row += RL(" " * (column_widths[col] - len(new_cell)))
      output.append(new_row)

    # Add stat totals.
    row_str = ""
    for col in range(len(device_total_row)):
      row_str += ("{:<%d}" % column_widths[col]).format(device_total_row[col])
    output.append(RL())
    output.append(RL(row_str))
    return debugger_cli_common.rich_text_lines_from_rich_line_list(output)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:100,代码来源:profile_analyzer_cli.py

示例15: get_run_start_intro

def get_run_start_intro(run_call_count,
                        fetches,
                        feed_dict,
                        tensor_filters):
  """Generate formatted intro for run-start UI.

  Args:
    run_call_count: (int) Run call counter.
    fetches: Fetches of the `Session.run()` call. See doc of `Session.run()`
      for more details.
    feed_dict: Feeds to the `Session.run()` call. See doc of `Session.run()`
      for more details.
    tensor_filters: (dict) A dict from tensor-filter name to tensor-filter
      callable.

  Returns:
    (RichTextLines) Formatted intro message about the `Session.run()` call.
  """

  fetch_lines = _get_fetch_names(fetches)

  if not feed_dict:
    feed_dict_lines = ["(Empty)"]
  else:
    feed_dict_lines = []
    for feed_key in feed_dict:
      if isinstance(feed_key, six.string_types):
        feed_dict_lines.append(feed_key)
      else:
        feed_dict_lines.append(feed_key.name)

  intro_lines = [
      "======================================",
      "Session.run() call #%d:" % run_call_count,
      "", "Fetch(es):"
  ]
  intro_lines.extend(["  " + line for line in fetch_lines])
  intro_lines.extend(["", "Feed dict(s):"])
  intro_lines.extend(["  " + line for line in feed_dict_lines])
  intro_lines.extend([
      "======================================", "",
      "Select one of the following commands to proceed ---->"
  ])

  out = debugger_cli_common.RichTextLines(intro_lines)

  out.extend(
      _recommend_command(
          "run",
          "Execute the run() call with debug tensor-watching",
          create_link=True))
  out.extend(
      _recommend_command(
          "run -n",
          "Execute the run() call without debug tensor-watching",
          create_link=True))
  out.extend(
      _recommend_command(
          "run -t <T>",
          "Execute run() calls (T - 1) times without debugging, then "
          "execute run() once more with debugging and drop back to the CLI"))
  out.extend(
      _recommend_command(
          "run -f <filter_name>",
          "Keep executing run() calls until a dumped tensor passes a given, "
          "registered filter (conditional breakpoint mode)"))

  more_lines = ["    Registered filter(s):"]
  if tensor_filters:
    filter_names = []
    for filter_name in tensor_filters:
      filter_names.append(filter_name)
      command_menu_node = debugger_cli_common.MenuItem(
          "", "run -f %s" % filter_name)
      more_lines.append(RL("        * ") + RL(filter_name, command_menu_node))
  else:
    more_lines.append("        (None)")

  out.extend(
      debugger_cli_common.rich_text_lines_from_rich_line_list(more_lines))

  out.extend(
      _recommend_command(
          "invoke_stepper",
          "Use the node-stepper interface, which allows you to interactively "
          "step through nodes involved in the graph run() call and "
          "inspect/modify their values", create_link=True))

  out.append("")

  out.append_rich_line(RL("For more details, see ") +
                       RL("help.", debugger_cli_common.MenuItem("", "help")) +
                       ".")
  out.append("")

  # Make main menu for the run-start intro.
  menu = debugger_cli_common.Menu()
  menu.append(debugger_cli_common.MenuItem("run", "run"))
  menu.append(debugger_cli_common.MenuItem(
      "invoke_stepper", "invoke_stepper"))
#.........这里部分代码省略.........
开发者ID:LUTAN,项目名称:tensorflow,代码行数:101,代码来源:cli_shared.py


注:本文中的tensorflow.python.debug.cli.debugger_cli_common.rich_text_lines_from_rich_line_list函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。