本文整理汇总了Python中tensorflow.python.compat.compat.forward_compatibility_horizon函数的典型用法代码示例。如果您正苦于以下问题:Python forward_compatibility_horizon函数的具体用法?Python forward_compatibility_horizon怎么用?Python forward_compatibility_horizon使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了forward_compatibility_horizon函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: benchmarkBatchMatMulBroadcast
def benchmarkBatchMatMulBroadcast(self):
for (a_shape, b_shape) in self.shape_pairs:
with compat.forward_compatibility_horizon(2019, 4, 26):
with ops.Graph().as_default(), \
session.Session(config=benchmark.benchmark_config()) as sess, \
ops.device("/cpu:0"):
matrix_a = variables.Variable(
GetRandomNormalInput(a_shape, np.float32))
matrix_b = variables.Variable(
GetRandomNormalInput(b_shape, np.float32))
variables.global_variables_initializer().run()
# Use batch matmul op's internal broadcasting.
self.run_op_benchmark(
sess,
math_ops.matmul(matrix_a, matrix_b),
min_iters=50,
name="batch_matmul_cpu_{}_{}".format(a_shape, b_shape))
# Manually broadcast the input matrices using the broadcast_to op.
broadcasted_batch_shape = array_ops.broadcast_static_shape(
matrix_a.shape[:-2], matrix_b.shape[:-2])
broadcasted_a_shape = broadcasted_batch_shape.concatenate(
matrix_a.shape[-2:])
broadcasted_b_shape = broadcasted_batch_shape.concatenate(
matrix_b.shape[-2:])
self.run_op_benchmark(
sess,
math_ops.matmul(
array_ops.broadcast_to(matrix_a, broadcasted_a_shape),
array_ops.broadcast_to(matrix_b, broadcasted_b_shape)),
min_iters=50,
name="batch_matmul_manual_broadcast_cpu_{}_{}".format(
a_shape, b_shape))
示例2: testNMS128From1024
def testNMS128From1024(self):
with compat.forward_compatibility_horizon(2018, 8, 8):
num_boxes = 1024
boxes_np = np.random.normal(50, 10, (num_boxes, 4)).astype("f4")
scores_np = np.random.normal(0.5, 0.1, (num_boxes,)).astype("f4")
max_output_size = 128
iou_threshold_np = np.array(0.5, dtype=np.float32)
score_threshold_np = np.array(0.0, dtype=np.float32)
with self.cached_session() as sess:
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
iou_threshold_np.shape)
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
score_threshold_np.shape)
with self.test_scope():
selected_indices = image_ops.non_max_suppression_padded(
boxes=boxes,
scores=scores,
max_output_size=max_output_size,
iou_threshold=iou_threshold,
score_threshold=score_threshold,
pad_to_max_output_size=True)
inputs_feed = {
boxes: boxes_np,
scores: scores_np,
score_threshold: score_threshold_np,
iou_threshold: iou_threshold_np
}
(indices_tf, _) = sess.run(selected_indices, feed_dict=inputs_feed)
self.assertEqual(indices_tf.size, max_output_size)
示例3: testStaticRegexReplaceDelegation
def testStaticRegexReplaceDelegation(self):
with compat.forward_compatibility_horizon(2018, 10, 11):
with self.test_session():
input_vector = constant_op.constant("foo", dtypes.string)
pattern = "[a-z]"
replace = "."
op = string_ops.regex_replace(input_vector, pattern, replace)
self.assertTrue(op.name.startswith("StaticRegexReplace"))
示例4: test3DTensorAsInputNoReshape
def test3DTensorAsInputNoReshape(self):
with compat.forward_compatibility_horizon(2018, 8, 27):
self._testSoftmax(
np.array([[[1., 1., 1., 1.], [1., 2., 3., 4.]],
[[2., 3., 4., 5.], [6., 7., 8., 9.]],
[[5., 4., 3., 2.], [1., 2., 3., 4.]]]).astype(np.float32),
use_gpu=False)
self._testOverflow(use_gpu=False)
示例5: test_decorator
def test_decorator(self):
compatibility_date = self._compatibility_date()
one_day_after = self._n_days_after(1)
with compat.forward_compatibility_horizon(*one_day_after):
self.assertTrue(compat.forward_compatible(*compatibility_date))
self.assertFalse(compat.forward_compatible(*one_day_after))
# After exiting context manager, value should be reset.
self.assertFalse(compat.forward_compatible(*compatibility_date))
示例6: testGatherNdResourceVariable
def testGatherNdResourceVariable(self):
with compat.forward_compatibility_horizon(2019, 4, 30):
with self.cached_session():
v = resource_variable_ops.ResourceVariable(
constant_op.constant([[1, 2], [3, 4], [5, 6]]))
self.evaluate(variables.global_variables_initializer())
gather = array_ops.gather_nd(v, [[0, 1], [2, 0]])
if not context.executing_eagerly(): # .op doesn't make sense in Eager
self.assertEqual("ResourceGatherNd", gather.op.inputs[0].op.type)
self.assertAllEqual([2, 5], gather)
示例7: testStaticRegexFullMatchDelegation
def testStaticRegexFullMatchDelegation(self):
with compat.forward_compatibility_horizon(2018, 11, 20):
with self.cached_session():
input_tensor = constant_op.constant("foo", dtypes.string)
pattern = "[a-z]*"
op = string_ops.regex_full_match(input_tensor, pattern)
self.assertTrue(op.name.startswith("StaticRegexFullMatch"), op.name)
pattern_tensor = constant_op.constant("[a-z]*", dtypes.string)
op_vec = string_ops.regex_full_match(input_tensor, pattern_tensor)
self.assertTrue(op_vec.name.startswith("RegexFullMatch"), op.name)
示例8: Test
def Test(self):
def CheckGradients(self, a_shape, b_shape):
self._compare(a_shape, b_shape, dtype, adjoint_a, adjoint_b)
with compat.forward_compatibility_horizon(2019, 4, 19):
CheckGradients(self, [1, 5, 2, 3], [7, 1, 3, 2])
CheckGradients(self, [2, 3], [1, 3, 5])
CheckGradients(self, [2, 3], [5, 3, 5])
CheckGradients(self, [5, 2, 5], [5, 3])
CheckGradients(self, [5, 2, 2, 3], [3, 5])
CheckGradients(self, [4, 5, 1, 2, 3], [1, 1, 3, 5])
CheckGradients(self, [1, 2, 1, 4, 2, 1, 3, 4], [3, 2, 1, 1, 1, 2, 4, 2])
示例9: test_decorator_with_failure
def test_decorator_with_failure(self):
compatibility_date = self._compatibility_date()
one_day_after = self._n_days_after(1)
class DummyError(Exception):
pass
try:
with compat.forward_compatibility_horizon(*one_day_after):
raise DummyError()
except DummyError:
pass # silence DummyError
# After exiting context manager, value should be reset.
self.assertFalse(compat.forward_compatible(*compatibility_date))
示例10: testNMS3Then2WithScoreThresh
def testNMS3Then2WithScoreThresh(self):
# Three boxes are selected based on IOU.
# One is filtered out by score threshold.
# TODO(b/26783907): The Sort HLO is not implemented on CPU or GPU.
if self.device in ["XLA_CPU", "XLA_GPU"]:
return
with compat.forward_compatibility_horizon(2018, 8, 8):
boxes_data = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9],
[0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]]
boxes_np = np.array(boxes_data, dtype=np.float32)
scores_data = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3]
scores_np = np.array(scores_data, dtype=np.float32)
max_output_size = 3
iou_threshold_np = np.array(0.5, dtype=np.float32)
score_threshold_np = np.array(0.4, dtype=np.float32)
with self.cached_session() as sess:
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
iou_threshold_np.shape)
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
score_threshold_np.shape)
with self.test_scope():
selected_indices = image_ops.non_max_suppression_padded(
boxes=boxes,
scores=scores,
max_output_size=max_output_size,
iou_threshold=iou_threshold,
score_threshold=score_threshold,
pad_to_max_output_size=True)
inputs_feed = {
boxes: boxes_np,
scores: scores_np,
iou_threshold: iou_threshold_np,
score_threshold: score_threshold_np
}
(indices_tf, num_valid) = sess.run(
selected_indices, feed_dict=inputs_feed)
self.assertEqual(indices_tf.size, max_output_size)
self.assertEqual(num_valid, 2)
self.assertAllClose(indices_tf[:num_valid], [3, 0])
示例11: testGradGradFloat32
def testGradGradFloat32(self):
with compat.forward_compatibility_horizon(2018, 11, 2):
with self.test_session():
x = constant_op.constant(
[-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9],
shape=[2, 5],
name="x")
y = nn_ops.leaky_relu(x, alpha=0.1, name="leaky_relu")
z = gradients_impl.gradients(y, x)
x_init = np.asarray(
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
dtype=np.float32,
order="F")
err = gradient_checker.compute_gradient_error(
x, [2, 5], z[0], [2, 5], x_init_value=x_init)
print("leaky_relu (float32) gradient of gradient err = ", err)
self.assertLess(err, 1e-4)
示例12: testGradGradFloat64
def testGradGradFloat64(self):
with compat.forward_compatibility_horizon(2018, 11, 2):
with self.cached_session():
def f(x):
assert x.dtype == dtypes.float64
with backprop.GradientTape() as tape:
tape.watch(x)
y = nn_ops.leaky_relu(x)
return tape.gradient(y, x)
x = np.asarray(
[[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]],
dtype=np.float64,
order="F")
err = gradient_checker_v2.max_error(
*gradient_checker_v2.compute_gradient(f, [x]))
print("leaky_relu (float64) gradient of gradient err = ", err)
self.assertLess(err, 1e-10)
示例13: testBasicGpu
def testBasicGpu(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
with compat.forward_compatibility_horizon(2018, 8, 4):
dataset = dataset_ops.Dataset.range(10)
multi_device_iterator = prefetching_ops.MultiDeviceIterator(
dataset, ["/cpu:1", "/gpu:0"])
elem_on_1, elem_on_2 = multi_device_iterator.get_next()
config = config_pb2.ConfigProto(device_count={"CPU": 2, "GPU": 1})
with self.test_session(config=config) as sess:
sess.run(multi_device_iterator.initializer)
for i in range(0, 10, 2):
self.assertEqual(i, sess.run(elem_on_1))
self.assertEqual(i + 1, sess.run(elem_on_2))
with self.assertRaises(errors.OutOfRangeError):
sess.run(elem_on_1)
sess.run(elem_on_2)
示例14: testNMS3From6Boxes
def testNMS3From6Boxes(self):
with compat.forward_compatibility_horizon(2018, 8, 8):
# Three boxes are selected based on IOU.
boxes_data = [[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9],
[0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]]
boxes_np = np.array(boxes_data, dtype=np.float32)
scores_data = [0.9, 0.75, 0.6, 0.95, 0.5, 0.3]
scores_np = np.array(scores_data, dtype=np.float32)
max_output_size = 3
iou_threshold_np = np.array(0.5, dtype=np.float32)
score_threshold_np = np.array(0.0, dtype=np.float32)
with self.cached_session() as sess:
boxes = array_ops.placeholder(boxes_np.dtype, shape=boxes_np.shape)
scores = array_ops.placeholder(scores_np.dtype, shape=scores_np.shape)
iou_threshold = array_ops.placeholder(iou_threshold_np.dtype,
iou_threshold_np.shape)
score_threshold = array_ops.placeholder(score_threshold_np.dtype,
score_threshold_np.shape)
with self.test_scope():
selected_indices = image_ops.non_max_suppression_padded(
boxes=boxes,
scores=scores,
max_output_size=max_output_size,
iou_threshold=iou_threshold,
score_threshold=score_threshold,
pad_to_max_output_size=True)
inputs_feed = {
boxes: boxes_np,
scores: scores_np,
score_threshold: score_threshold_np,
iou_threshold: iou_threshold_np
}
(indices_tf, num_valid) = sess.run(
selected_indices, feed_dict=inputs_feed)
self.assertEqual(indices_tf.size, max_output_size)
self.assertEqual(num_valid, 3)
self.assertAllClose(indices_tf[:num_valid], [3, 0, 5])
示例15: testCopyToDevicePingPongCPUGPU
def testCopyToDevicePingPongCPUGPU(self):
if not test_util.is_gpu_available():
self.skipTest("No GPU available")
with compat.forward_compatibility_horizon(2018, 8, 4):
host_dataset = dataset_ops.Dataset.range(10)
device_dataset = host_dataset.apply(
prefetching_ops.copy_to_device("/gpu:0", source_device="/cpu:0"))
back_to_cpu_dataset = device_dataset.apply(
prefetching_ops.copy_to_device("/cpu:0", source_device="/gpu:0"))
with ops.device("/cpu:0"):
iterator = back_to_cpu_dataset.make_initializable_iterator()
next_element = iterator.get_next()
with self.cached_session() as sess:
sess.run(iterator.initializer)
for i in range(10):
self.assertEqual(i, sess.run(next_element))
with self.assertRaises(errors.OutOfRangeError):
sess.run(next_element)