当前位置: 首页>>代码示例>>Python>>正文


Python Interpreter.set_tensor方法代码示例

本文整理汇总了Python中tensorflow.lite.python.interpreter.Interpreter.set_tensor方法的典型用法代码示例。如果您正苦于以下问题:Python Interpreter.set_tensor方法的具体用法?Python Interpreter.set_tensor怎么用?Python Interpreter.set_tensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.lite.python.interpreter.Interpreter的用法示例。


在下文中一共展示了Interpreter.set_tensor方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testFunctionalSequentialModel

# 需要导入模块: from tensorflow.lite.python.interpreter import Interpreter [as 别名]
# 或者: from tensorflow.lite.python.interpreter.Interpreter import set_tensor [as 别名]
  def testFunctionalSequentialModel(self):
    """Test a Functional tf.keras model containing a Sequential model."""
    with session.Session().as_default():
      model = keras.models.Sequential()
      model.add(keras.layers.Dense(2, input_shape=(3,)))
      model.add(keras.layers.RepeatVector(3))
      model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
      model = keras.models.Model(model.input, model.output)

      model.compile(
          loss=keras.losses.MSE,
          optimizer=keras.optimizers.RMSprop(),
          metrics=[keras.metrics.categorical_accuracy],
          sample_weight_mode='temporal')
      x = np.random.random((1, 3))
      y = np.random.random((1, 3, 3))
      model.train_on_batch(x, y)
      model.predict(x)

      model.predict(x)
      fd, keras_file = tempfile.mkstemp('.h5')
      try:
        keras.models.save_model(model, keras_file)
      finally:
        os.close(fd)

    # Convert to TFLite model.
    converter = lite.TFLiteConverter.from_keras_model_file(keras_file)
    tflite_model = converter.convert()
    self.assertTrue(tflite_model)

    # Check tensor details of converted model.
    interpreter = Interpreter(model_content=tflite_model)
    interpreter.allocate_tensors()

    input_details = interpreter.get_input_details()
    self.assertEqual(1, len(input_details))
    self.assertEqual('dense_input', input_details[0]['name'])
    self.assertEqual(np.float32, input_details[0]['dtype'])
    self.assertTrue(([1, 3] == input_details[0]['shape']).all())
    self.assertEqual((0., 0.), input_details[0]['quantization'])

    output_details = interpreter.get_output_details()
    self.assertEqual(1, len(output_details))
    self.assertEqual('time_distributed/Reshape_1', output_details[0]['name'])
    self.assertEqual(np.float32, output_details[0]['dtype'])
    self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all())
    self.assertEqual((0., 0.), output_details[0]['quantization'])

    # Check inference of converted model.
    input_data = np.array([[1, 2, 3]], dtype=np.float32)
    interpreter.set_tensor(input_details[0]['index'], input_data)
    interpreter.invoke()
    tflite_result = interpreter.get_tensor(output_details[0]['index'])

    keras_model = keras.models.load_model(keras_file)
    keras_result = keras_model.predict(input_data)

    np.testing.assert_almost_equal(tflite_result, keras_result, 5)
    os.remove(keras_file)
开发者ID:aeverall,项目名称:tensorflow,代码行数:62,代码来源:lite_test.py

示例2: _evaluateTFLiteModel

# 需要导入模块: from tensorflow.lite.python.interpreter import Interpreter [as 别名]
# 或者: from tensorflow.lite.python.interpreter.Interpreter import set_tensor [as 别名]
  def _evaluateTFLiteModel(self, tflite_model, input_data):
    """Evaluates the model on the `input_data`."""
    interpreter = Interpreter(model_content=tflite_model)
    interpreter.allocate_tensors()

    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    for input_tensor, tensor_data in zip(input_details, input_data):
      interpreter.set_tensor(input_tensor['index'], tensor_data.numpy())
    interpreter.invoke()
    return interpreter.get_tensor(output_details[0]['index'])
开发者ID:aritratony,项目名称:tensorflow,代码行数:14,代码来源:lite_v2_test.py

示例3: testSequentialModel

# 需要导入模块: from tensorflow.lite.python.interpreter import Interpreter [as 别名]
# 或者: from tensorflow.lite.python.interpreter.Interpreter import set_tensor [as 别名]
  def testSequentialModel(self):
    """Test a Sequential tf.keras model with default inputs."""
    keras_file = self._getSequentialModel()

    converter = lite.TFLiteConverter.from_keras_model_file(keras_file)
    tflite_model = converter.convert()
    self.assertTrue(tflite_model)

    # Check tensor details of converted model.
    interpreter = Interpreter(model_content=tflite_model)
    interpreter.allocate_tensors()

    input_details = interpreter.get_input_details()
    self.assertEqual(1, len(input_details))
    self.assertEqual('dense_input', input_details[0]['name'])
    self.assertEqual(np.float32, input_details[0]['dtype'])
    self.assertTrue(([1, 3] == input_details[0]['shape']).all())
    self.assertEqual((0., 0.), input_details[0]['quantization'])

    output_details = interpreter.get_output_details()
    self.assertEqual(1, len(output_details))
    self.assertEqual('time_distributed/Reshape_1', output_details[0]['name'])
    self.assertEqual(np.float32, output_details[0]['dtype'])
    self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all())
    self.assertEqual((0., 0.), output_details[0]['quantization'])

    # Check inference of converted model.
    input_data = np.array([[1, 2, 3]], dtype=np.float32)
    interpreter.set_tensor(input_details[0]['index'], input_data)
    interpreter.invoke()
    tflite_result = interpreter.get_tensor(output_details[0]['index'])

    keras_model = keras.models.load_model(keras_file)
    keras_result = keras_model.predict(input_data)

    np.testing.assert_almost_equal(tflite_result, keras_result, 5)
    os.remove(keras_file)
开发者ID:aeverall,项目名称:tensorflow,代码行数:39,代码来源:lite_test.py


注:本文中的tensorflow.lite.python.interpreter.Interpreter.set_tensor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。