本文整理汇总了Python中tensorflow.contrib.util.loader.load_op_library函数的典型用法代码示例。如果您正苦于以下问题:Python load_op_library函数的具体用法?Python load_op_library怎么用?Python load_op_library使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_op_library函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: zero_initializer
def zero_initializer(ref, use_locking=True, name="zero_initializer"):
"""Initialize 'ref' with all zeros, ref tensor should be uninitialized.
If already initialized, you will get ValueError. This op is intended to
save memory during initialization.
Args:
ref: ref of the tensor need to be zero initialized.
name: optional name for this operation.
Returns:
ref that initialized.
Raises:
ValueError: If ref tensor is initialized.
"""
loader.load_op_library(
resource_loader.get_path_to_datafile("_variable_ops.so"))
return gen_variable_ops.zero_initializer(ref, name=name)
示例2: _maybe_load_nccl_ops_so
def _maybe_load_nccl_ops_so():
"""Loads nccl ops so if it hasn't been loaded already."""
with _module_lock:
global _nccl_ops_so
if not _nccl_ops_so:
_nccl_ops_so = loader.load_op_library(
resource_loader.get_path_to_datafile('_nccl_ops.so'))
示例3: Load
def Load():
"""Load training ops library and return the loaded module."""
with _ops_lock:
global _training_ops
if not _training_ops:
ops_path = resource_loader.get_path_to_datafile(TRAINING_OPS_FILE)
logging.info('data path: %s', ops_path)
_training_ops = loader.load_op_library(ops_path)
assert _training_ops, 'Could not load _training_ops.so'
return _training_ops
示例4: restore
def restore(self, restored_tensors, unused_restored_shapes):
"""Restores the associated tree ensemble from 'restored_tensors'.
Args:
restored_tensors: the tensors that were loaded from a checkpoint.
unused_restored_shapes: the shapes this object should conform to after
restore. Not meaningful for trees.
Returns:
The operation that restores the state of the tree ensemble variable.
"""
with ops.control_dependencies([self._create_op]):
return self.deserialize(
stamp_token=restored_tensors[0],
num_updates=restored_tensors[1],
partition_ids=restored_tensors[2],
feature_ids=restored_tensors[3],
gradients=restored_tensors[4],
hessians=restored_tensors[5])
def resource(self):
return self._resource_handle
# Conditionally load ops, they might already be statically linked in.
try:
_stats_accumulator_ops = loader.load_op_library(
resource_loader.get_path_to_datafile("_stats_accumulator_ops.so"))
except (errors.NotFoundError, IOError):
print("Error loading _stats_accumulator_ops.so")
示例5: function_buffering_resource
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python wrapper for prefetching_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.data.python.ops import gen_prefetching_ops
from tensorflow.contrib.util import loader
from tensorflow.python.platform import resource_loader
_prefetching_ops = loader.load_op_library(
resource_loader.get_path_to_datafile("../../_prefetching_ops.so"))
# TODO(rohanj): Add a python class that constructs resource in the __init__
# method and provides a get_next() that calls the prefetch op.
def function_buffering_resource(string_arg,
target_device,
shared_name,
f,
buffer_size,
thread_pool_size=1,
container="",
name=None):
return gen_prefetching_ops.function_buffering_resource(
string_arg=string_arg,
target_device=target_device,
示例6: _lstm_block_cell
import abc
from tensorflow.contrib.rnn.ops import gen_lstm_ops
from tensorflow.contrib.rnn.python.ops import fused_rnn_cell
from tensorflow.contrib.util import loader
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.platform import resource_loader
_lstm_ops_so = loader.load_op_library(
resource_loader.get_path_to_datafile("_lstm_ops.so"))
# pylint: disable=invalid-name
def _lstm_block_cell(x,
cs_prev,
h_prev,
w,
b,
wci=None,
wcf=None,
wco=None,
forget_bias=None,
cell_clip=None,
use_peephole=None,
name=None):
示例7:
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python helper for loading kinesis ops and kernels."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.util import loader
from tensorflow.python.platform import resource_loader
_dataset_ops = loader.load_op_library(
resource_loader.get_path_to_datafile("../../_dataset_ops.so"))
示例8: _create_default_group_assignment
from tensorflow.contrib.tpu.python.tpu import tpu_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.platform import tf_logging as logging
if platform.system() != "Windows":
# pylint: disable=wildcard-import,unused-import,g-import-not-at-top
from tensorflow.contrib.tpu.ops import gen_tpu_ops
from tensorflow.contrib.tpu.ops.gen_tpu_ops import *
from tensorflow.contrib.util import loader
from tensorflow.python.platform import resource_loader
# pylint: enable=wildcard-import,unused-import,g-import-not-at-top
_tpu_ops = loader.load_op_library(
resource_loader.get_path_to_datafile("_tpu_ops.so"))
def _create_default_group_assignment():
num_shards = tpu_function.get_tpu_context().number_of_shards
if num_shards is None:
logging.warning(
"cross_replica_sum should be used within a tpu_shard_context, but "
"got unset number_of_shards. Assuming 1.")
num_shards = 1
group_assignment = [list(range(num_shards))]
return group_assignment
def all_to_all(x,
concat_dimension,
split_dimension,
split_count,
示例9: print
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Split handler custom ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# pylint: disable=wildcard-import
from tensorflow.contrib.boosted_trees.python.ops.gen_ensemble_optimizer_ops import *
# pylint: enable=wildcard-import
from tensorflow.contrib.util import loader
from tensorflow.python.framework import errors
from tensorflow.python.platform import resource_loader
# Conditionally load ops, they might already be statically linked in.
try:
_ensemble_optimizer_ops = loader.load_op_library(
resource_loader.get_path_to_datafile('_ensemble_optimizer_ops.so'))
except (errors.NotFoundError, IOError):
print('Error loading _ensemble_optimizer_ops.so')
示例10:
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python wrapper for the reduce slice operators."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.reduce_slice_ops.ops import gen_reduce_slice_ops
from tensorflow.contrib.util import loader
from tensorflow.python.platform import resource_loader
_reduce_slice_ops = loader.load_op_library(
resource_loader.get_path_to_datafile("_reduce_slice_ops.so"))
reduce_slice_sum = gen_reduce_slice_ops.reduce_slice_sum
reduce_slice_prod = gen_reduce_slice_ops.reduce_slice_prod
reduce_slice_max = gen_reduce_slice_ops.reduce_slice_max
reduce_slice_min = gen_reduce_slice_ops.reduce_slice_min
示例11: obtain_next
# ==============================================================================
"""Python wrapper for input_pipeline_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.util import loader
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import resource_loader
_input_pipeline_ops = loader.load_op_library(
resource_loader.get_path_to_datafile("_input_pipeline_ops.so"))
def obtain_next(string_list_tensor, counter):
"""Basic wrapper for the ObtainNextOp.
Args:
string_list_tensor: A tensor that is a list of strings
counter: an int64 ref tensor to keep track of which element is returned.
Returns:
An op that produces the element at counter + 1 in the list, round
robin style.
"""
return _input_pipeline_ops.obtain_next(string_list_tensor, counter)
示例12: bucketize
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrappers for bucketization operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.util import loader
from tensorflow.python.framework import ops
from tensorflow.python.platform import resource_loader
_bucketization_op = loader.load_op_library(
resource_loader.get_path_to_datafile("_bucketization_op.so"))
def bucketize(input_tensor, boundaries, name=None):
"""Bucketizes input_tensor by given boundaries.
See bucketize_op.cc for more details.
Args:
input_tensor: A `Tensor` which will be bucketize.
boundaries: A list of floats gives the boundaries. It has to be sorted.
name: A name prefix for the returned tensors (optional).
Returns:
A `Tensor` with type int32 which indicates the corresponding bucket for
each value in `input_tensor`.
示例13: random_hsv_in_yiq
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python layer for distort_image_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.util import loader
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.platform import resource_loader
_distort_image_ops = loader.load_op_library(
resource_loader.get_path_to_datafile('_distort_image_ops.so'))
# pylint: disable=invalid-name
def random_hsv_in_yiq(image,
max_delta_hue=0,
lower_saturation=1,
upper_saturation=1,
lower_value=1,
upper_value=1,
seed=None):
"""Adjust hue, saturation, value of an RGB image randomly in YIQ color space.
Equivalent to `adjust_yiq_hsv()` but uses a `delta_h` randomly
picked in the interval `[-max_delta_hue, max_delta_hue]`, a `scale_saturation`
randomly picked in the interval `[lower_saturation, upper_saturation]`, and
示例14:
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# pylint: disable=unused-import
from tensorflow.contrib.periodic_resample.python.ops import gen_periodic_resample_op
from tensorflow.contrib.periodic_resample.python.ops.gen_periodic_resample_op import periodic_resample
from tensorflow.contrib.util import loader
from tensorflow.python.platform import resource_loader
# pylint: enable=unused-import
_periodic_resample_op = loader.load_op_library(
resource_loader.get_path_to_datafile('_periodic_resample_op.so'))
示例15: all_sum
# ==============================================================================
"""Ops for GPU collective operations implemented using NVIDIA nccl."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import threading
from tensorflow.contrib.nccl.ops import gen_nccl_ops
from tensorflow.contrib.util import loader
from tensorflow.python.eager import context
from tensorflow.python.framework import device
from tensorflow.python.framework import ops
from tensorflow.python.platform import resource_loader
_nccl_ops_so = loader.load_op_library(
resource_loader.get_path_to_datafile('_nccl_ops.so'))
def all_sum(tensors):
"""Returns a list of tensors with the all-reduce sum across `tensors`.
The computation is done with an all-reduce operation, so if only some of the
returned tensors are evaluated then the computation will hang.
Args:
tensors: The input tensors across which to sum; must be assigned
to GPU devices.
Returns:
List of tensors, each with the sum of the input tensors, where tensor i has
the same device as `tensors[i]`.