本文整理汇总了Python中tensorflow.contrib.slim.python.slim.nets.resnet_utils.subsample函数的典型用法代码示例。如果您正苦于以下问题:Python subsample函数的具体用法?Python subsample怎么用?Python subsample使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了subsample函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testSubsampleThreeByThree
def testSubsampleThreeByThree(self):
x = array_ops.reshape(math_ops.to_float(math_ops.range(9)), [1, 3, 3, 1])
x = resnet_utils.subsample(x, 2)
expected = array_ops.reshape(
constant_op.constant([0, 2, 6, 8]), [1, 2, 2, 1])
with self.test_session():
self.assertAllClose(x.eval(), expected.eval())
示例2: testSubsampleFourByFour
def testSubsampleFourByFour(self):
x = array_ops.reshape(math_ops.to_float(math_ops.range(16)), [1, 4, 4, 1])
x = resnet_utils.subsample(x, 2)
expected = array_ops.reshape(
constant_op.constant([0, 2, 8, 10]), [1, 2, 2, 1])
with self.test_session():
self.assertAllClose(x.eval(), expected.eval())
示例3: bottleneck_hole
def bottleneck_hole(inputs,
depth,
depth_bottleneck,
stride,
rate=2,
outputs_collections=None,
scope=None):
with variable_scope.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = layers.conv2d(
inputs,
depth, [1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = layers.conv2d(
inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = layers_lib.conv2d(residual, depth_bottleneck, [3, 3], stride=1, rate=rate, padding='SAME', scope='conv2')
residual = layers.conv2d(
residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3')
output = nn_ops.relu(shortcut + residual)
return utils.collect_named_outputs(outputs_collections, sc.name, output)
示例4: testAtrousFullyConvolutionalValues
def testAtrousFullyConvolutionalValues(self):
"""Verify dense feature extraction with atrous convolution."""
nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with arg_scope(resnet_utils.resnet_arg_scope()):
with ops.Graph().as_default():
with self.test_session() as sess:
random_seed.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
# Dense feature extraction followed by subsampling.
output, _ = self._resnet_small(
inputs,
None,
is_training=False,
global_pool=False,
output_stride=output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
variable_scope.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected, _ = self._resnet_small(
inputs, None, is_training=False, global_pool=False)
sess.run(variables.global_variables_initializer())
self.assertAllClose(
output.eval(), expected.eval(), atol=1e-4, rtol=1e-4)
示例5: bottleneck
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
rate=1,
outputs_collections=None,
scope=None):
"""Bottleneck residual unit variant with BN before convolutions.
This is the full preactivation residual unit variant proposed in [2]. See
Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
variant which has an extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
preact = layers.batch_norm(
inputs, activation_fn=nn_ops.relu, scope='preact')
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = layers_lib.conv2d(
preact,
depth, [1, 1],
stride=stride,
normalizer_fn=None,
activation_fn=None,
scope='shortcut')
residual = layers_lib.conv2d(
preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = resnet_utils.conv2d_same(
residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
residual = layers_lib.conv2d(
residual,
depth, [1, 1],
stride=1,
normalizer_fn=None,
activation_fn=None,
scope='conv3')
output = shortcut + residual
return utils.collect_named_outputs(outputs_collections, sc.name, output)
示例6: bottleneck
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None):
with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = slim.conv2d(inputs, depth, [1, 1], stride=stride, activation_fn=None, scope='shortcut')
residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
residual = slim.conv2d(residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3')
output = tf.nn.relu(shortcut + residual)
return slim.utils.collect_named_outputs(outputs_collections, sc.original_name_scope, output)
示例7: _atrousValues
def _atrousValues(self, bottleneck):
"""Verify the values of dense feature extraction by atrous convolution.
Make sure that dense feature extraction by stack_blocks_dense() followed by
subsampling gives identical results to feature extraction at the nominal
network output stride using the simple self._stack_blocks_nondense() above.
Args:
bottleneck: The bottleneck function.
"""
blocks = [
resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]),
resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]),
resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])
]
nominal_stride = 8
# Test both odd and even input dimensions.
height = 30
width = 31
with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
for output_stride in [1, 2, 4, 8, None]:
with ops.Graph().as_default():
with self.test_session() as sess:
random_seed.set_random_seed(0)
inputs = create_test_input(1, height, width, 3)
# Dense feature extraction followed by subsampling.
output = resnet_utils.stack_blocks_dense(inputs, blocks,
output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
variable_scope.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected = self._stack_blocks_nondense(inputs, blocks)
sess.run(variables.global_variables_initializer())
output, expected = sess.run([output, expected])
self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)
示例8: testAtrousValuesBottleneck
def testAtrousValuesBottleneck(self):
"""Verify the values of dense feature extraction by atrous convolution.
Make sure that dense feature extraction by stack_blocks_dense() followed by
subsampling gives identical results to feature extraction at the nominal
network output stride using the simple self._stack_blocks_nondense() above.
"""
block = resnet_v2.resnet_v2_block
blocks = [
block('block1', base_depth=1, num_units=2, stride=2),
block('block2', base_depth=2, num_units=2, stride=2),
block('block3', base_depth=4, num_units=2, stride=2),
block('block4', base_depth=8, num_units=2, stride=1),
]
nominal_stride = 8
# Test both odd and even input dimensions.
height = 30
width = 31
with arg_scope(resnet_utils.resnet_arg_scope()):
with arg_scope([layers.batch_norm], is_training=False):
for output_stride in [1, 2, 4, 8, None]:
with ops.Graph().as_default():
with self.test_session() as sess:
random_seed.set_random_seed(0)
inputs = create_test_input(1, height, width, 3)
# Dense feature extraction followed by subsampling.
output = resnet_utils.stack_blocks_dense(inputs, blocks,
output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
variable_scope.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected = self._stack_blocks_nondense(inputs, blocks)
sess.run(variables.global_variables_initializer())
output, expected = sess.run([output, expected])
self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4)
示例9: testConv2DSameOdd
def testConv2DSameOdd(self):
n, n2 = 5, 3
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = array_ops.reshape(w, [3, 3, 1, 1])
variable_scope.get_variable('Conv/weights', initializer=w)
variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1]))
variable_scope.get_variable_scope().reuse_variables()
y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = math_ops.cast([[14, 28, 43, 58, 34],
[28, 48, 66, 84, 46],
[43, 66, 84, 102, 55],
[58, 84, 102, 120, 64],
[34, 46, 55, 64, 30]],
dtypes.float32)
y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = math_ops.cast([[14, 43, 34],
[43, 84, 55],
[34, 55, 30]],
dtypes.float32)
y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = y2_expected
with self.cached_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例10: testConv2DSameEven
def testConv2DSameEven(self):
n, n2 = 4, 2
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = array_ops.reshape(w, [3, 3, 1, 1])
variable_scope.get_variable('Conv/weights', initializer=w)
variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1]))
variable_scope.get_variable_scope().reuse_variables()
y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = math_ops.to_float([[14, 28, 43, 26], [28, 48, 66, 37],
[43, 66, 84, 46], [26, 37, 46, 22]])
y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = math_ops.to_float([[14, 43], [43, 84]])
y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = math_ops.to_float([[48, 37], [37, 22]])
y4_expected = array_ops.reshape(y4_expected, [1, n2, n2, 1])
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())