当前位置: 首页>>代码示例>>Python>>正文


Python slim.l2_regularizer函数代码示例

本文整理汇总了Python中tensorflow.contrib.slim.l2_regularizer函数的典型用法代码示例。如果您正苦于以下问题:Python l2_regularizer函数的具体用法?Python l2_regularizer怎么用?Python l2_regularizer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了l2_regularizer函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_model

  def create_model(self,
                   model_input,
                   vocab_size,
                   num_mixtures=None,
                   l2_penalty=1e-8,
                   **unused_params):
    """Creates a Mixture of (Logistic) Experts model.

     The model consists of a per-class softmax distribution over a
     configurable number of logistic classifiers. One of the classifiers in the
     mixture is not trained, and always predicts 0.

    Args:
      model_input: 'batch_size' x 'num_features' matrix of input features.
      vocab_size: The number of classes in the dataset.
      num_mixtures: The number of mixtures (excluding a dummy 'expert' that
        always predicts the non-existence of an entity).
      l2_penalty: How much to penalize the squared magnitudes of parameter
        values.
    Returns:
      A dictionary with a tensor containing the probability predictions of the
      model in the 'predictions' key. The dimensions of the tensor are
      batch_size x num_classes.
    """
    num_mixtures = num_mixtures or FLAGS.moe_num_mixtures

    gate_activations = slim.fully_connected(
        model_input,
        vocab_size * (num_mixtures + 1),
        activation_fn=None,
        biases_initializer=None,
        weights_regularizer=slim.l2_regularizer(l2_penalty),
        scope="gates")
    expert_activations = slim.fully_connected(
        model_input,
        vocab_size * num_mixtures,
        activation_fn=None,
        weights_regularizer=slim.l2_regularizer(l2_penalty),
        scope="experts")

    gating_distribution = tf.nn.softmax(tf.reshape(
        gate_activations,
        [-1, num_mixtures + 1]))  # (Batch * #Labels) x (num_mixtures + 1)
    expert_distribution = tf.nn.sigmoid(tf.reshape(
        expert_activations,
        [-1, num_mixtures]))  # (Batch * #Labels) x num_mixtures

    final_probabilities_by_class_and_batch = tf.reduce_sum(
        gating_distribution[:, :num_mixtures] * expert_distribution, 1)
    final_probabilities = tf.reshape(final_probabilities_by_class_and_batch,
                                     [-1, vocab_size])
    return {"predictions": final_probabilities}
开发者ID:vijayky88,项目名称:youtube-8m,代码行数:52,代码来源:video_level_models.py

示例2: create_model

  def create_model(self, model_input, vocab_size, num_frames, **unused_params):
    """Creates a model which uses a logistic classifier over the average of the
    frame-level features.

    This class is intended to be an example for implementors of frame level
    models. If you want to train a model over averaged features it is more
    efficient to average them beforehand rather than on the fly.

    Args:
      model_input: A 'batch_size' x 'max_frames' x 'num_features' matrix of
                   input features.
      vocab_size: The number of classes in the dataset.
      num_frames: A vector of length 'batch' which indicates the number of
           frames for each video (before padding).

    Returns:
      A dictionary with a tensor containing the probability predictions of the
      model in the 'predictions' key. The dimensions of the tensor are
      'batch_size' x 'num_classes'.
    """
    num_frames = tf.cast(tf.expand_dims(num_frames, 1), tf.float32)
    feature_size = model_input.get_shape().as_list()[2]

    denominators = tf.reshape(
        tf.tile(num_frames, [1, feature_size]), [-1, feature_size])
    avg_pooled = tf.reduce_sum(model_input,
                               axis=[1]) / denominators

    output = slim.fully_connected(
        avg_pooled, vocab_size, activation_fn=tf.nn.sigmoid,
        weights_regularizer=slim.l2_regularizer(1e-8))
    return {"predictions": output}
开发者ID:vijayky88,项目名称:youtube-8m,代码行数:32,代码来源:frame_level_models.py

示例3: inference

def inference(image_batch, keep_probability, 
              phase_train=True, bottleneck_layer_size=512, 
              weight_decay=0.0):
    batch_norm_params = {
        'decay': 0.995,
        'epsilon': 0.001,
        'scale':True,
        'is_training': phase_train,
        'updates_collections': None,
        'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ]
    }    
    with tf.variable_scope('Resface'):
        with slim.arg_scope([slim.conv2d, slim.fully_connected], 
                             weights_initializer=tf.contrib.layers.xavier_initializer(),
                             weights_regularizer=slim.l2_regularizer(weight_decay), 
                             activation_fn=prelu,
                             normalizer_fn=slim.batch_norm,
                             #normalizer_fn=None,
                             normalizer_params=batch_norm_params):
            with slim.arg_scope([slim.conv2d], kernel_size=3):
                return resface20(images=image_batch, 
                                keep_probability=keep_probability, 
                                phase_train=phase_train, 
                                bottleneck_layer_size=bottleneck_layer_size, 
                                reuse=None)
开发者ID:Joker316701882,项目名称:Additive-Margin-Softmax,代码行数:25,代码来源:resface.py

示例4: encoder

    def encoder(self, images, is_training):
        activation_fn = leaky_relu  # tf.nn.relu
        weight_decay = 0.0
        with tf.variable_scope('encoder'):
            with slim.arg_scope([slim.batch_norm],
                                is_training=is_training):
                with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                    weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                    weights_regularizer=slim.l2_regularizer(weight_decay),
                                    normalizer_fn=slim.batch_norm,
                                    normalizer_params=self.batch_norm_params):
                    net = images
                    
                    net = slim.conv2d(net, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 32, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_1b')
                    
                    net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 64, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_2b')

                    net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 128, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_3b')

                    net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4a')
                    net = slim.repeat(net, 3, conv2d_block, 0.1, 256, [4, 4], 1, activation_fn=activation_fn, scope='Conv2d_4b')
                    
                    net = slim.flatten(net)
                    fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
                    fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
        return fc1, fc2
开发者ID:NickyGeorge,项目名称:facenet,代码行数:29,代码来源:dfc_vae_resnet.py

示例5: inference

def inference(image_batch, keep_probability, 
              phase_train=True, bottleneck_layer_size=512, 
              weight_decay=0.0):
    with tf.variable_scope('LResnetE_IR'):
        with slim.arg_scope([slim.conv2d, slim.fully_connected], 
                             weights_initializer=tf.contrib.layers.xavier_initializer(), 
                             weights_regularizer=slim.l2_regularizer(weight_decay), 
                             biases_initializer=None, #default no biases
                             activation_fn=None,
                             normalizer_fn=None
                             ):
            with slim.arg_scope([slim.conv2d], kernel_size=3):
                with slim.arg_scope([slim.batch_norm],
                                    decay=0.995,
                                    epsilon=1e-5,
                                    scale=True,
                                    is_training=phase_train,
                                    activation_fn=prelu,
                                    updates_collections=None,
                                    variables_collections=[ tf.GraphKeys.TRAINABLE_VARIABLES ]
                                   ):
                    return LResnet50E_IR(images=image_batch, 
                                    keep_probability=keep_probability, 
                                    phase_train=phase_train, 
                                    bottleneck_layer_size=bottleneck_layer_size, 
                                    reuse=None)
开发者ID:Joker316701882,项目名称:Additive-Margin-Softmax,代码行数:26,代码来源:insightface.py

示例6: _extra_conv_arg_scope

def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):

  with slim.arg_scope(
      [slim.conv2d, slim.conv2d_transpose],
      padding='SAME',
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
      activation_fn=activation_fn,
      normalizer_fn=normalizer_fn,) as arg_sc:
    with slim.arg_scope(
      [slim.fully_connected],
          weights_regularizer=slim.l2_regularizer(weight_decay),
          weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
          activation_fn=activation_fn,
          normalizer_fn=normalizer_fn) as arg_sc:
          return arg_sc
开发者ID:imyourm8,项目名称:FastMaskRCNN,代码行数:16,代码来源:pyramid_network.py

示例7: decoder

 def decoder(self, latent_var, is_training):
     activation_fn = leaky_relu  # tf.nn.relu
     weight_decay = 0.0 
     with tf.variable_scope('decoder'):
         with slim.arg_scope([slim.batch_norm],
                             is_training=is_training):
             with slim.arg_scope([slim.conv2d, slim.fully_connected],
                                 weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
                                 weights_regularizer=slim.l2_regularizer(weight_decay),
                                 normalizer_fn=slim.batch_norm,
                                 normalizer_params=self.batch_norm_params):
                 net = slim.fully_connected(latent_var, 4096, activation_fn=None, normalizer_fn=None, scope='Fc_1')
                 net = tf.reshape(net, [-1,4,4,256], name='Reshape')
                 
                 net = tf.image.resize_nearest_neighbor(net, size=(8,8), name='Upsample_1')
                 net = slim.conv2d(net, 128, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_1a')
                 net = slim.repeat(net, 3, conv2d_block, 0.1, 128, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_1b')
         
                 net = tf.image.resize_nearest_neighbor(net, size=(16,16), name='Upsample_2')
                 net = slim.conv2d(net, 64, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_2a')
                 net = slim.repeat(net, 3, conv2d_block, 0.1, 64, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_2b')
         
                 net = tf.image.resize_nearest_neighbor(net, size=(32,32), name='Upsample_3')
                 net = slim.conv2d(net, 32, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_3a')
                 net = slim.repeat(net, 3, conv2d_block, 0.1, 32, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_3b')
         
                 net = tf.image.resize_nearest_neighbor(net, size=(64,64), name='Upsample_4')
                 net = slim.conv2d(net, 3, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_4a')
                 net = slim.repeat(net, 3, conv2d_block, 0.1, 3, [3, 3], 1, activation_fn=activation_fn, scope='Conv2d_4b')
                 net = slim.conv2d(net, 3, [3, 3], 1, activation_fn=None, scope='Conv2d_4c')
             
     return net
开发者ID:NickyGeorge,项目名称:facenet,代码行数:32,代码来源:dfc_vae_resnet.py

示例8: build_feature_pyramid

    def build_feature_pyramid(self):

        '''
        reference: https://github.com/CharlesShang/FastMaskRCNN
        build P2, P3, P4, P5, P6
        :return: multi-scale feature map
        '''

        feature_pyramid = {}
        with tf.variable_scope('feature_pyramid'):
            with slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(self.rpn_weight_decay)):
                feature_pyramid['P5'] = slim.conv2d(self.feature_maps_dict['C5'],
                                                    num_outputs=256,
                                                    kernel_size=[1, 1],
                                                    stride=1,
                                                    scope='build_P5')

                feature_pyramid['P6'] = slim.max_pool2d(feature_pyramid['P5'],
                                                        kernel_size=[2, 2], stride=2, scope='build_P6')
                # P6 is down sample of P5

                for layer in range(4, 1, -1):
                    p, c = feature_pyramid['P' + str(layer + 1)], self.feature_maps_dict['C' + str(layer)]
                    up_sample_shape = tf.shape(c)
                    up_sample = tf.image.resize_nearest_neighbor(p, [up_sample_shape[1], up_sample_shape[2]],
                                                                 name='build_P%d/up_sample_nearest_neighbor' % layer)

                    c = slim.conv2d(c, num_outputs=256, kernel_size=[1, 1], stride=1,
                                    scope='build_P%d/reduce_dimension' % layer)
                    p = up_sample + c
                    p = slim.conv2d(p, 256, kernel_size=[3, 3], stride=1,
                                    padding='SAME', scope='build_P%d/avoid_aliasing' % layer)
                    feature_pyramid['P' + str(layer)] = p

        return feature_pyramid
开发者ID:mbossX,项目名称:RRPN_FPN_Tensorflow,代码行数:35,代码来源:build_rpn.py

示例9: build_graph

    def build_graph(self, image, label):
        image = tf.expand_dims(image, 3)

        image = image * 2 - 1

        is_training = get_current_tower_context().is_training
        with slim.arg_scope([slim.layers.fully_connected],
                            weights_regularizer=slim.l2_regularizer(1e-5)):
            l = slim.layers.conv2d(image, 32, [3, 3], scope='conv0')
            l = slim.layers.max_pool2d(l, [2, 2], scope='pool0')
            l = slim.layers.conv2d(l, 32, [3, 3], padding='SAME', scope='conv1')
            l = slim.layers.conv2d(l, 32, [3, 3], scope='conv2')
            l = slim.layers.max_pool2d(l, [2, 2], scope='pool1')
            l = slim.layers.conv2d(l, 32, [3, 3], scope='conv3')
            l = slim.layers.flatten(l, scope='flatten')
            l = slim.layers.fully_connected(l, 512, scope='fc0')
            l = slim.layers.dropout(l, is_training=is_training)
            logits = slim.layers.fully_connected(l, 10, activation_fn=None, scope='fc1')

        cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
        cost = tf.reduce_mean(cost, name='cross_entropy_loss')

        acc = tf.to_float(tf.nn.in_top_k(logits, label, 1))

        acc = tf.reduce_mean(acc, name='accuracy')
        summary.add_moving_summary(acc)

        summary.add_moving_summary(cost)
        summary.add_param_summary(('.*/weights', ['histogram', 'rms']))  # slim uses different variable names
        return cost + regularize_cost_from_collection()
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:30,代码来源:mnist-tfslim.py

示例10: _l2_regularized_embedding

 def _l2_regularized_embedding(self, n_class, h_dim, scope_name, var_name='y_emb'):
     with tf.variable_scope(scope_name):
         embeddings = tf.get_variable(
             name=var_name,
             shape=[n_class, h_dim],
             regularizer=slim.l2_regularizer(1e-6))
     return embeddings
开发者ID:QianQQ,项目名称:Voice-Conversion,代码行数:7,代码来源:vae.py

示例11: inference

    def inference(self):
        _x = tf.reshape(self.x, shape=[-1, self.input_shape[0], self.input_shape[1], self.input_shape[2]])
        # tf.image_summary(_x.op.name, _x, max_images=10, collections=[digits.GraphKeys.SUMMARIES_TRAIN])

        # Split out the color channels
        _, model_g, model_b = tf.split(_x, 3, 3, name='split_channels')
        # tf.image_summary(model_g.op.name, model_g, max_images=10, collections=[digits.GraphKeys.SUMMARIES_TRAIN])
        # tf.image_summary(model_b.op.name, model_b, max_images=10, collections=[digits.GraphKeys.SUMMARIES_TRAIN])

        with slim.arg_scope([slim.conv2d, slim.fully_connected],
                            weights_initializer=tf.contrib.layers.xavier_initializer(),
                            weights_regularizer=slim.l2_regularizer(0.0005)):
            with tf.variable_scope("siamese") as scope:
                def make_tower(net):
                    net = slim.conv2d(net, 20, [5, 5], padding='VALID', scope='conv1')
                    net = slim.max_pool2d(net, [2, 2], padding='VALID', scope='pool1')
                    net = slim.conv2d(net, 50, [5, 5], padding='VALID', scope='conv2')
                    net = slim.max_pool2d(net, [2, 2], padding='VALID', scope='pool2')
                    net = slim.flatten(net)
                    net = slim.fully_connected(net, 500, scope='fc1')
                    net = slim.fully_connected(net, 2, activation_fn=None, scope='fc2')
                    return net

                model_g = make_tower(model_g)
                model_g = tf.reshape(model_g, shape=[-1, 2])
                scope.reuse_variables()
                model_b = make_tower(model_b)
                model_b = tf.reshape(model_b, shape=[-1, 2])

                return [model_g, model_b]
开发者ID:Dasona,项目名称:DIGITS,代码行数:30,代码来源:siamese-TF.py

示例12: __init__

  def __init__(self, net, labels_one_hot, model_params, method_params):
    """Stores argument in member variable for further use.

    Args:
      net: A tensor with shape [batch_size, num_features, feature_size] which
        contains some extracted image features.
      labels_one_hot: An optional (can be None) ground truth labels for the
        input features. Is a tensor with shape
        [batch_size, seq_length, num_char_classes]
      model_params: A namedtuple with model parameters (model.ModelParams).
      method_params: A SequenceLayerParams instance.
    """
    self._params = model_params
    self._mparams = method_params
    self._net = net
    self._labels_one_hot = labels_one_hot
    self._batch_size = net.get_shape().dims[0].value

    # Initialize parameters for char logits which will be computed on the fly
    # inside an LSTM decoder.
    self._char_logits = {}
    regularizer = slim.l2_regularizer(self._mparams.weight_decay)
    self._softmax_w = slim.model_variable(
        'softmax_w',
        [self._mparams.num_lstm_units, self._params.num_char_classes],
        initializer=orthogonal_initializer,
        regularizer=regularizer)
    self._softmax_b = slim.model_variable(
        'softmax_b', [self._params.num_char_classes],
        initializer=tf.zeros_initializer(),
        regularizer=regularizer)
开发者ID:812864539,项目名称:models,代码行数:31,代码来源:sequence_layers.py

示例13: __init__

	def __init__(self,is_training):
		
		self.input_image = tf.placeholder(dtype=tf.float32,shape=[None,64,64,3],name='input_image')
		
		self.input_label = tf.placeholder(dtype=tf.float32,shape=[None,100],name='input_label')

		self.input_nlcd = tf.placeholder(dtype=tf.float32,shape=[None,15],name='input_nlcd')

		#logits, end_points = resnet_v2.resnet_v2_50(self.input_image, num_classes=100, is_training=True)

		# flatten_hist = tf.reshape(self.input_image,[-1,96])

		self.keep_prob = tf.placeholder(tf.float32)

		weights_regularizer=slim.l2_regularizer(FLAGS.weight_decay)


		flatten_hist = tf.reshape(self.input_image,[-1,3*64*64])
		flatten_hist = tf.concat([flatten_hist,self.input_nlcd],1)
		x = slim.fully_connected(flatten_hist, 512,weights_regularizer=weights_regularizer,scope='decoder/fc_1')
		x = slim.fully_connected(x, 1024,weights_regularizer=weights_regularizer, scope='decoder/fc_2')
		flatten_hist = slim.fully_connected(x, 512,weights_regularizer=weights_regularizer, scope='decoder/fc_3')

		all_logits = []
		all_output = []

		for i in range(100):
			if i == 0 :
				current_input_x = flatten_hist
			else:
				current_output = tf.concat(all_output,1)
				current_input_x = tf.concat([flatten_hist,current_output],1)

			x = slim.fully_connected(current_input_x, 256,weights_regularizer=weights_regularizer)
			x = slim.fully_connected(x, 100,weights_regularizer=weights_regularizer)
			#x = slim.fully_connected(x, 17,weights_regularizer=weights_regularizer)

			x = slim.dropout(x,keep_prob=self.keep_prob,is_training=is_training)
			all_logits.append(slim.fully_connected(x, 1, activation_fn=None, weights_regularizer=weights_regularizer))
			all_output.append(tf.sigmoid(all_logits[i]))

		final_logits = tf.concat(all_logits,1)
		final_output = tf.sigmoid(final_logits)

		self.output = final_output
		self.ce_loss = tf.reduce_mean(tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=self.input_label,logits=final_logits),1))

		slim.losses.add_loss(self.ce_loss)
		tf.summary.scalar('ce_loss',self.ce_loss)
		
		# l2 loss
		self.l2_loss = tf.add_n(slim.losses.get_regularization_losses())
		tf.summary.scalar('l2_loss',self.l2_loss)

		#total loss
		self.total_loss = slim.losses.get_total_loss()
		tf.summary.scalar('total_loss',self.total_loss)

		#self.output = tf.sigmoid(x)
开发者ID:ParsonsZeng,项目名称:MEDL_CVAE,代码行数:59,代码来源:resnet.py

示例14: build_resnet50

def build_resnet50(inputs, get_pred, is_training, var_scope):
    batch_norm_params = {'is_training': is_training}
    with tf.variable_scope(var_scope) as sc:
        with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
                            normalizer_fn=slim.batch_norm,
                            normalizer_params=batch_norm_params,
                            weights_regularizer=slim.l2_regularizer(0.0001),
                            activation_fn=tf.nn.relu):
            conv1 = conv(inputs, 64, 7, 2) # H/2  -   64D
            pool1 = maxpool(conv1,           3) # H/4  -   64D
            conv2 = resblock(pool1,      64, 3) # H/8  -  256D
            conv3 = resblock(conv2,     128, 4) # H/16 -  512D
            conv4 = resblock(conv3,     256, 6) # H/32 - 1024D
            conv5 = resblock(conv4,     512, 3) # H/64 - 2048D

            skip1 = conv1
            skip2 = pool1
            skip3 = conv2
            skip4 = conv3
            skip5 = conv4
            
            # DECODING
            upconv6 = upconv(conv5,   512, 3, 2) #H/32
            upconv6 = resize_like(upconv6, skip5)
            concat6 = tf.concat([upconv6, skip5], 3)
            iconv6  = conv(concat6,   512, 3, 1)

            upconv5 = upconv(iconv6, 256, 3, 2) #H/16
            upconv5 = resize_like(upconv5, skip4)
            concat5 = tf.concat([upconv5, skip4], 3)
            iconv5  = conv(concat5,   256, 3, 1)

            upconv4 = upconv(iconv5,  128, 3, 2) #H/8
            upconv4 = resize_like(upconv4, skip3)
            concat4 = tf.concat([upconv4, skip3], 3)
            iconv4  = conv(concat4,   128, 3, 1)
            pred4 = get_pred(iconv4)
            upred4  = upsample_nn(pred4, 2)

            upconv3 = upconv(iconv4,   64, 3, 2) #H/4
            concat3 = tf.concat([upconv3, skip2, upred4], 3)
            iconv3  = conv(concat3,    64, 3, 1)
            pred3 = get_pred(iconv3)
            upred3  = upsample_nn(pred3, 2)

            upconv2 = upconv(iconv3,   32, 3, 2) #H/2
            concat2 = tf.concat([upconv2, skip1, upred3], 3)
            iconv2  = conv(concat2,    32, 3, 1)
            pred2 = get_pred(iconv2)
            upred2  = upsample_nn(pred2, 2)

            upconv1 = upconv(iconv2,  16, 3, 2) #H
            concat1 = tf.concat([upconv1, upred2], 3)
            iconv1  = conv(concat1,   16, 3, 1)
            pred1 = get_pred(iconv1)

            return [pred1, pred2, pred3, pred4]
开发者ID:yang330624,项目名称:GeoNet,代码行数:57,代码来源:geonet_nets.py

示例15: prediction_layer

def prediction_layer(cfg, input, name, num_outputs):
    with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], padding='SAME',
                        activation_fn=None, normalizer_fn=None,
                        weights_regularizer=slim.l2_regularizer(cfg.weight_decay)):
        with tf.variable_scope(name):
            pred = slim.conv2d_transpose(input, num_outputs,
                                         kernel_size=[3, 3], stride=2,
                                         scope='block4')
            return pred
开发者ID:PJunhyuk,项目名称:people-counting-pose,代码行数:9,代码来源:pose_net.py


注:本文中的tensorflow.contrib.slim.l2_regularizer函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。