当前位置: 首页>>代码示例>>Python>>正文


Python loss_ops.get_total_loss函数代码示例

本文整理汇总了Python中tensorflow.contrib.losses.python.losses.loss_ops.get_total_loss函数的典型用法代码示例。如果您正苦于以下问题:Python get_total_loss函数的具体用法?Python get_total_loss怎么用?Python get_total_loss使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get_total_loss函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testTrainWithTrace

  def testTrainWithTrace(self):
    logdir = os.path.join(
        tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      summary.scalar('total_loss', total_loss)

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      loss = learning.train(
          train_op,
          logdir,
          number_of_steps=300,
          log_every_n_steps=10,
          trace_every_n_steps=100)
    self.assertIsNotNone(loss)
    for trace_step in [1, 101, 201]:
      trace_filename = 'tf_trace-%d.json' % trace_step
      self.assertTrue(os.path.isfile(os.path.join(logdir, trace_filename)))
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:27,代码来源:learning_test.py

示例2: testNoneGlobalStep

  def testNoneGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = batchnorm_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(
          total_loss, optimizer, global_step=None)

      global_step = variables_lib.get_or_create_global_step()

      with session_lib.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib2.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # Since train_op don't use global_step it shouldn't change.
        self.assertAllClose(global_step, 0)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:25,代码来源:training_test.py

示例3: testTrainWithSessionWrapper

  def testTrainWithSessionWrapper(self):
    """Test that slim.learning.train can take `session_wrapper` args.

    One of the applications of `session_wrapper` is the wrappers of TensorFlow
    Debugger (tfdbg), which intercept methods calls to `tf.Session` (e.g., run)
    to achieve debugging. `DumpingDebugWrapperSession` is used here for testing
    purpose.
    """
    dump_root = tempfile.mkdtemp()

    def dumping_wrapper(sess):  # pylint: disable=invalid-name
      return dumping_wrapper_lib.DumpingDebugWrapperSession(sess, dump_root)

    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      loss = learning.train(
          train_op, None, number_of_steps=1, session_wrapper=dumping_wrapper)
    self.assertIsNotNone(loss)

    run_root = glob.glob(os.path.join(dump_root, 'run_*'))[-1]
    dump = debug_data.DebugDumpDir(run_root)
    self.assertAllEqual(0,
                        dump.get_tensors('global_step', 0, 'DebugIdentity')[0])
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:34,代码来源:learning_test.py

示例4: testResumeTrainAchievesRoughlyTheSameLoss

  def testResumeTrainAchievesRoughlyTheSameLoss(self):
    number_of_steps = [300, 1, 5]
    logdir = os.path.join(self.get_temp_dir(), 'resume_train_same_loss')

    for i in range(len(number_of_steps)):
      with ops.Graph().as_default():
        random_seed.set_random_seed(i)
        tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
        tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

        tf_predictions = logistic_classifier(tf_inputs)
        loss_ops.log_loss(tf_predictions, tf_labels)
        total_loss = loss_ops.get_total_loss()

        optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

        train_op = training.create_train_op(total_loss, optimizer)

        saver = saver_lib.Saver()

        loss = training.train(
            train_op,
            logdir,
            hooks=[
                basic_session_run_hooks.StopAtStepHook(
                    num_steps=number_of_steps[i]),
                basic_session_run_hooks.CheckpointSaverHook(
                    logdir, save_steps=50, saver=saver),
            ])
        self.assertIsNotNone(loss)
        self.assertLess(loss, .015)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:31,代码来源:training_test.py

示例5: ModelLoss

  def ModelLoss(self):
    tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
    tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

    tf_predictions = logistic_classifier(tf_inputs)
    loss_ops.log_loss(tf_predictions, tf_labels)
    return loss_ops.get_total_loss()
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:7,代码来源:training_test.py

示例6: testEmptyUpdateOps

  def testEmptyUpdateOps(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = batchnorm_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(total_loss, optimizer, update_ops=[])

      moving_mean = variables_lib.get_variables_by_name('moving_mean')[0]
      moving_variance = variables_lib.get_variables_by_name('moving_variance')[
          0]

      with session_lib.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib2.global_variables_initializer())
        mean, variance = sess.run([moving_mean, moving_variance])
        # After initialization moving_mean == 0 and moving_variance == 1.
        self.assertAllClose(mean, [0] * 4)
        self.assertAllClose(variance, [1] * 4)

        for _ in range(10):
          sess.run([train_op])
        mean = moving_mean.eval()
        variance = moving_variance.eval()

        # Since we skip update_ops the moving_vars are not updated.
        self.assertAllClose(mean, [0] * 4)
        self.assertAllClose(variance, [1] * 4)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:33,代码来源:training_test.py

示例7: testResumeTrainAchievesRoughlyTheSameLoss

  def testResumeTrainAchievesRoughlyTheSameLoss(self):
    logdir = os.path.join(
        tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
    number_of_steps = [300, 301, 305]

    for i in range(len(number_of_steps)):
      with ops.Graph().as_default():
        random_seed.set_random_seed(i)
        tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
        tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

        tf_predictions = LogisticClassifier(tf_inputs)
        loss_ops.log_loss(tf_predictions, tf_labels)
        total_loss = loss_ops.get_total_loss()

        optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

        train_op = learning.create_train_op(total_loss, optimizer)

        loss = learning.train(
            train_op,
            logdir,
            number_of_steps=number_of_steps[i],
            log_every_n_steps=10)
        self.assertIsNotNone(loss)
        self.assertLess(loss, .015)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:26,代码来源:learning_test.py

示例8: testTrainOpInCollection

  def testTrainOpInCollection(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = batchnorm_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(total_loss, optimizer)

      # Make sure the training op was recorded in the proper collection
      self.assertTrue(train_op in ops.get_collection(ops.GraphKeys.TRAIN_OP))
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:15,代码来源:training_test.py

示例9: testTrainWithNoneAsLogdirWhenUsingTraceRaisesError

  def testTrainWithNoneAsLogdirWhenUsingTraceRaisesError(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      with self.assertRaises(ValueError):
        learning.train(
            train_op, None, number_of_steps=300, trace_every_n_steps=10)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:17,代码来源:learning_test.py

示例10: testTrainWithNoneAsInitWhenUsingVarsRaisesError

  def testTrainWithNoneAsInitWhenUsingVarsRaisesError(self):
    logdir = os.path.join(
        tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      with self.assertRaises(RuntimeError):
        learning.train(train_op, logdir, init_op=None, number_of_steps=300)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:18,代码来源:learning_test.py

示例11: create_train_op

  def create_train_op(self, learning_rate=1.0, gradient_multiplier=1.0):
    tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
    tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

    tf_predictions = LogisticClassifier(tf_inputs)
    loss_ops.log_loss(tf_predictions, tf_labels)
    total_loss = loss_ops.get_total_loss()

    optimizer = gradient_descent.GradientDescentOptimizer(
        learning_rate=learning_rate)

    if gradient_multiplier != 1.0:
      variables = variables_lib.trainable_variables()
      gradient_multipliers = {var: gradient_multiplier for var in variables}
    else:
      gradient_multipliers = None

    return learning.create_train_op(
        total_loss, optimizer, gradient_multipliers=gradient_multipliers)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:19,代码来源:learning_test.py

示例12: testTrainWithNoInitAssignCanAchieveZeroLoss

  def testTrainWithNoInitAssignCanAchieveZeroLoss(self):
    g = ops.Graph()
    with g.as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = batchnorm_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(total_loss, optimizer)

      loss = training.train(
          train_op,
          self._logdir,
          hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)])
      self.assertLess(loss, .1)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:20,代码来源:training_test.py

示例13: testTrainWithNoInitAssignCanAchieveZeroLoss

  def testTrainWithNoInitAssignCanAchieveZeroLoss(self):
    logdir = os.path.join(
        tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      loss = learning.train(
          train_op, logdir, number_of_steps=300, log_every_n_steps=10)
      self.assertIsNotNone(loss)
      self.assertLess(loss, .015)
开发者ID:AndrewTwinz,项目名称:tensorflow,代码行数:20,代码来源:learning_test.py

示例14: testCanAchieveZeroLoss

  def testCanAchieveZeroLoss(self):
    logdir = os.path.join(self.get_temp_dir(), 'can_achieve_zero_loss')

    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = logistic_classifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = training.create_train_op(total_loss, optimizer)

      loss = training.train(
          train_op,
          logdir,
          hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)])
      self.assertIsNotNone(loss)
      self.assertLess(loss, .015)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:22,代码来源:training_test.py

示例15: testTrainWithEpochLimit

  def testTrainWithEpochLimit(self):
    logdir = os.path.join(tempfile.mkdtemp(prefix=self.get_temp_dir()),
                          'tmp_logs')
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
      tf_inputs_limited = input_lib.limit_epochs(tf_inputs, num_epochs=300)
      tf_labels_limited = input_lib.limit_epochs(tf_labels, num_epochs=300)

      tf_predictions = LogisticClassifier(tf_inputs_limited)
      loss_ops.log_loss(tf_predictions, tf_labels_limited)
      total_loss = loss_ops.get_total_loss()

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      loss = learning.train(train_op, logdir, log_every_n_steps=10)
    self.assertIsNotNone(loss)
    self.assertLess(loss, .015)
    self.assertTrue(os.path.isfile('{}/model.ckpt-300.index'.format(logdir)))
    self.assertTrue(os.path.isfile('{}/model.ckpt-300.data-00000-of-00001'.format(logdir)))
开发者ID:Immexxx,项目名称:tensorflow,代码行数:23,代码来源:learning_test.py


注:本文中的tensorflow.contrib.losses.python.losses.loss_ops.get_total_loss函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。