本文整理汇总了Python中tensorflow.contrib.learn.python.learn.learn_runner.run函数的典型用法代码示例。如果您正苦于以下问题:Python run函数的具体用法?Python run怎么用?Python run使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了run函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
def train(self):
experiment_fn = self._generate_experiment_fn()
hparams = HParams(**self.customer_params)
learn_runner.run(experiment_fn,
run_config=self._build_run_config(),
hparams=hparams)
示例2: test_fail_invalid_hparams_type
def test_fail_invalid_hparams_type(self):
run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR)
with self.assertRaisesRegexp(ValueError, _INVALID_HPARAMS_ERR_MSG):
learn_runner.run(build_experiment_for_run_config,
run_config=run_config,
schedule="local_run",
hparams=["hparams"])
示例3: test_fail_output_dir_and_run_config_are_both_set
def test_fail_output_dir_and_run_config_are_both_set(self):
with self.assertRaisesRegexp(
ValueError, _CANNOT_SET_BOTH_OUTPUT_DIR_AND_CONFIG_MSG):
learn_runner.run(build_experiment,
output_dir=_MODIR_DIR,
schedule="simple_task",
run_config=run_config_lib.RunConfig())
示例4: main
def main(argv=None):
"""Run a Tensorflow model on the Criteo dataset."""
env = json.loads(os.environ.get('TF_CONFIG', '{}'))
# First find out if there's a task value on the environment variable.
# If there is none or it is empty define a default one.
task_data = env.get('task') or {'type': 'master', 'index': 0}
argv = sys.argv if argv is None else argv
args = create_parser().parse_args(args=argv[1:])
trial = task_data.get('trial')
if trial is not None:
output_dir = os.path.join(args.output_path, trial)
else:
output_dir = args.output_path
# Do only evaluation if instructed so, or call Experiment's run.
if args.eval_only_summary_filename:
experiment = get_experiment_fn(args)(output_dir)
# Note that evaluation here will appear as 'one_pass' in tensorboard.
results = experiment.evaluate(delay_secs=0)
# Converts numpy types to native types for json dumps.
json_out = json.dumps(
{key: value.tolist() for key, value in results.iteritems()})
with tf.Session():
tf.write_file(args.eval_only_summary_filename, json_out).run()
else:
learn_runner.run(experiment_fn=get_experiment_fn(args),
output_dir=output_dir)
示例5: main
def main(argv=None):
args = parse_arguments(sys.argv if argv is None else argv)
tf.logging.set_verbosity(tf.logging.INFO)
learn_runner.run(
experiment_fn=get_experiment_fn(args),
output_dir=args.job_dir)
示例6: run
def run(data_dir, model, output_dir, train_steps, eval_steps, schedule):
"""Runs an Estimator locally or distributed.
Args:
data_dir: The directory the data can be found in.
model: The name of the model to use.
output_dir: The directory to store outputs in.
train_steps: The number of steps to run training for.
eval_steps: The number of steps to run evaluation for.
schedule: (str) The schedule to run. The value here must
be the name of one of Experiment's methods.
"""
exp_fn = make_experiment_fn(
data_dir=data_dir,
model_name=model,
train_steps=train_steps,
eval_steps=eval_steps)
# Create hparams and run_config
run_config = create_run_config(output_dir)
hparams = create_hparams(
FLAGS.hparams_set, data_dir, passed_hparams=FLAGS.hparams)
if is_chief():
save_metadata(output_dir, hparams)
learn_runner.run(
experiment_fn=exp_fn,
schedule=schedule,
run_config=run_config,
hparams=hparams)
示例7: main
def main(argv=None):
"""Run a Tensorflow model on the Iris dataset."""
args = parse_arguments(sys.argv if argv is None else argv)
tf.logging.set_verbosity(tf.logging.INFO)
learn_runner.run(
experiment_fn=get_experiment_fn(args),
output_dir=args.job_dir)
示例8: main
def main(unused_argv):
tf.flags.mark_flag_as_required('model_dir')
tf.flags.mark_flag_as_required('pipeline_config_path')
config = tf.contrib.learn.RunConfig(model_dir=FLAGS.model_dir)
learn_runner.run(
experiment_fn=build_experiment_fn(FLAGS.num_train_steps,
FLAGS.num_eval_steps),
run_config=config,
hparams=model_hparams.create_hparams())
示例9: test_fail_not_experiment
def test_fail_not_experiment(self):
def _experiment_fn(run_config, hparams):
del run_config, hparams # unused.
return "not experiment"
run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR)
with self.assertRaisesRegexp(TypeError, _NOT_EXP_TYPE_MSG):
learn_runner.run(_experiment_fn,
run_config=run_config,
schedule="simple_task")
示例10: main
def main(argv=None):
args = parse_arguments(sys.argv if argv is None else argv)
local_analysis(args)
set_logging_level(args)
# Supress TensorFlow Debugging info.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
learn_runner.run(
experiment_fn=get_experiment_fn(args),
output_dir=args.job_dir)
示例11: main
def main(_argv):
"""The entrypoint for the script"""
# Parse YAML FLAGS
FLAGS.hooks = _maybe_load_yaml(FLAGS.hooks)
FLAGS.metrics = _maybe_load_yaml(FLAGS.metrics)
FLAGS.model_params = _maybe_load_yaml(FLAGS.model_params)
FLAGS.input_pipeline_train = _maybe_load_yaml(FLAGS.input_pipeline_train)
FLAGS.input_pipeline_dev = _maybe_load_yaml(FLAGS.input_pipeline_dev)
# Load flags from config file
final_config = {}
if FLAGS.config_paths:
for config_path in FLAGS.config_paths.split(","):
config_path = config_path.strip()
if not config_path:
continue
config_path = os.path.abspath(config_path)
tf.logging.info("Loading config from %s", config_path)
with gfile.GFile(config_path.strip()) as config_file:
config_flags = yaml.load(config_file)
final_config = _deep_merge_dict(final_config, config_flags)
tf.logging.info("Final Config:\n%s", yaml.dump(final_config))
# Merge flags with config values
for flag_key, flag_value in final_config.items():
if hasattr(FLAGS, flag_key) and isinstance(getattr(FLAGS, flag_key), dict):
merged_value = _deep_merge_dict(flag_value, getattr(FLAGS, flag_key))
setattr(FLAGS, flag_key, merged_value)
elif hasattr(FLAGS, flag_key):
setattr(FLAGS, flag_key, flag_value)
else:
tf.logging.warning("Ignoring config flag: %s", flag_key)
if FLAGS.save_checkpoints_secs is None \
and FLAGS.save_checkpoints_steps is None:
FLAGS.save_checkpoints_secs = 600
tf.logging.info("Setting save_checkpoints_secs to %d",
FLAGS.save_checkpoints_secs)
if not FLAGS.output_dir:
FLAGS.output_dir = tempfile.mkdtemp()
if not FLAGS.input_pipeline_train:
raise ValueError("You must specify input_pipeline_train")
if not FLAGS.input_pipeline_dev:
raise ValueError("You must specify input_pipeline_dev")
learn_runner.run(
experiment_fn=create_experiment,
output_dir=FLAGS.output_dir,
schedule=FLAGS.schedule)
示例12: test_basic_run_config_uid_check
def test_basic_run_config_uid_check(self):
expected_run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR)
def _experiment_fn(run_config, hparams):
del run_config, hparams # unused.
# Explicitly use a new run_config.
new_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR + "/123")
return TestExperiment(config=new_config)
with self.assertRaisesRegexp(RuntimeError, _RUN_CONFIG_UID_CHECK_ERR_MSG):
learn_runner.run(experiment_fn=_experiment_fn,
run_config=expected_run_config)
示例13: main
def main(args):
env = json.loads(os.environ.get('TF_CONFIG', '{}'))
# Print the job data as provided by the service.
logging.info('Original job data: %s', env.get('job', {}))
# First find out if there's a task value on the environment variable.
# If there is none or it is empty define a default one.
task_data = env.get('task', {'type': 'master', 'index': 0})
trial = task_data.get('trial')
if trial is not None:
args.output_path = os.path.join(args.output_path, trial)
learn_runner.run(make_experiment_fn(args), args.output_path)
示例14: main
def main(argv):
parser = argparse.ArgumentParser()
# You must accept a --job-dir argument when running on Cloud ML Engine. It specifies where checkpoints should be saved.
# You can define additional user arguments which will have to be specified after an empty arg -- on the command line:
# gcloud ml-engine jobs submit training jobXXX --job-dir=... --ml-engine-args -- --user-args
parser.add_argument('--job-dir', default="checkpoints", help='GCS or local path where to store training checkpoints')
args = parser.parse_args()
arguments = args.__dict__
arguments['data'] = "data" # Hard-coded here: training data will be downloaded to folder 'data'.
# learn_runner needs an experiment function with a single parameter: the output directory.
# Here we pass additional command line arguments through a closure.
output_dir = arguments.pop('job_dir')
experiment_fn = lambda output_dir: experiment_fn_with_params(output_dir, **arguments)
learn_runner.run(experiment_fn, output_dir)
示例15: test_fail_invalid_experiment_config_type
def test_fail_invalid_experiment_config_type(self):
expected_run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR)
def _experiment_fn(run_config, hparams):
del run_config, hparams # unused.
# Explicitly use a new run_config without `uid` method.
new_config = core_run_config_lib.RunConfig(
model_dir=_MODIR_DIR + "/123")
return TestExperiment(config=new_config)
with self.assertRaisesRegexp(RuntimeError,
_MISSING_RUN_CONFIG_UID_ERR_MSG):
learn_runner.run(experiment_fn=_experiment_fn,
run_config=expected_run_config)