当前位置: 首页>>代码示例>>Python>>正文


Python head._regression_head函数代码示例

本文整理汇总了Python中tensorflow.contrib.learn.python.learn.estimators.head._regression_head函数的典型用法代码示例。如果您正苦于以下问题:Python _regression_head函数的具体用法?Python _regression_head怎么用?Python _regression_head使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了_regression_head函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testRegression

 def testRegression(self):
     head = head_lib._regression_head()
     with tf.Graph().as_default(), tf.Session() as sess:
         prediction = tf.constant([[1.0], [1.0], [3.0]])
         labels = tf.constant([[0.0], [1.0], [1.0]])
         model_fn_ops = head.head_ops({}, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=prediction)
         self.assertAlmostEqual(5.0 / 3, sess.run(model_fn_ops.loss))
开发者ID:yuikns,项目名称:tensorflow,代码行数:7,代码来源:head_test.py

示例2: testRegression

 def testRegression(self):
   head = head_lib._regression_head()
   with tf.Graph().as_default(), tf.Session() as sess:
     prediction = tf.constant([[1.], [1.], [3.]])
     targets = tf.constant([[0.], [1.], [1.]])
     model_fn_ops = head.head_ops({}, targets,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  None, logits=prediction)
     self.assertAlmostEqual(5. / 3, sess.run(model_fn_ops.loss))
开发者ID:Qstar,项目名称:tensorflow,代码行数:9,代码来源:head_test.py

示例3: testRegressionWithWeights

 def testRegressionWithWeights(self):
     head = head_lib._regression_head(weight_column_name="label_weight")
     with tf.Graph().as_default(), tf.Session() as sess:
         features = {"label_weight": tf.constant([[2.0], [5.0], [0.0]])}
         prediction = tf.constant([[1.0], [1.0], [3.0]])
         labels = tf.constant([[0.0], [1.0], [1.0]])
         model_fn_ops = head.head_ops(
             features, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=prediction
         )
         self.assertAlmostEqual(2.0 / 3, sess.run(model_fn_ops.loss), places=3)
开发者ID:yuikns,项目名称:tensorflow,代码行数:10,代码来源:head_test.py

示例4: testRegression

 def testRegression(self):
   head = head_lib._regression_head()
   with tf.Graph().as_default(), tf.Session():
     prediction = tf.constant([[1.], [1.], [3.]])
     labels = tf.constant([[0.], [1.], [1.]])
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=prediction)
     _assert_no_variables(self)
     _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:10,代码来源:head_test.py

示例5: testRegressionEvalMode

 def testRegressionEvalMode(self):
   head = head_lib._regression_head()
   with ops.Graph().as_default(), session.Session():
     prediction = constant_op.constant([[1.], [1.], [3.]])
     labels = constant_op.constant([[0.], [1.], [1.]])
     model_fn_ops = head.head_ops(
         {}, labels, model_fn.ModeKeys.EVAL, _noop_train_op, logits=prediction)
     self.assertIsNone(model_fn_ops.train_op)
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops)
开发者ID:kadeng,项目名称:tensorflow,代码行数:11,代码来源:head_test.py

示例6: testErrorInSparseTensorLabels

 def testErrorInSparseTensorLabels(self):
     head = head_lib._regression_head()
     with tf.Graph().as_default():
         prediction = tf.constant([[1.0], [1.0], [3.0]])
         labels = tf.SparseTensor(
             indices=tf.constant([[0, 0], [1, 0], [2, 0]], dtype=tf.int64),
             values=tf.constant([0.0, 1.0, 1.0]),
             shape=[3, 1],
         )
         with self.assertRaisesRegexp(ValueError, "SparseTensor is not supported as labels."):
             head.head_ops({}, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=prediction)
开发者ID:yuikns,项目名称:tensorflow,代码行数:11,代码来源:head_test.py

示例7: testRegressionWithLabelName

 def testRegressionWithLabelName(self):
   label_name = "my_label"
   head = head_lib._regression_head(label_name=label_name)
   with tf.Graph().as_default(), tf.Session():
     prediction = tf.constant([[1.], [1.], [3.]])
     labels = {label_name: tf.constant([[0.], [1.], [1.]])}
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=prediction)
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:12,代码来源:head_test.py

示例8: testRegressionWithLogits

 def testRegressionWithLogits(self):
   head = head_lib._regression_head()
   with ops.Graph().as_default(), session.Session():
     model_fn_ops = head.create_model_fn_ops(
         {},
         labels=((0.,), (1.,), (1.,)),
         mode=model_fn.ModeKeys.TRAIN,
         train_op_fn=_noop_train_op,
         logits=((1.,), (1.,), (3.,)))
     _assert_summary_tags(self, ["loss"])
     _assert_no_variables(self)
     _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:12,代码来源:head_test.py

示例9: testErrorInSparseTensorTarget

 def testErrorInSparseTensorTarget(self):
   head = head_lib._regression_head()
   with tf.Graph().as_default():
     prediction = tf.constant([[1.], [1.], [3.]])
     targets = tf.SparseTensor(
         indices=tf.constant([[0, 0], [1, 0], [2, 0]], dtype=tf.int64),
         values=tf.constant([0., 1., 1.]),
         shape=[3, 1])
     with self.assertRaisesRegexp(
         ValueError, "SparseTensor is not supported as a target"):
       head.head_ops({}, targets, tf.contrib.learn.ModeKeys.TRAIN, None,
                     logits=prediction)
开发者ID:Qstar,项目名称:tensorflow,代码行数:12,代码来源:head_test.py

示例10: testRegressionWithWeights

 def testRegressionWithWeights(self):
   head = head_lib._regression_head(weight_column_name="label_weight")
   with ops.Graph().as_default(), session.Session():
     weights = ((2.,), (5.,), (0.,))
     model_fn_ops = head.create_model_fn_ops(
         features={"label_weight": weights},
         labels=((0.,), (1.,), (1.,)),
         mode=model_fn.ModeKeys.TRAIN,
         train_op_fn=_noop_train_op,
         logits=((1.,), (1.,), (3.,)))
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     _assert_metrics(self, 2. / len(weights), {"loss": 2. / np.sum(weights)},
                     model_fn_ops)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:14,代码来源:head_test.py

示例11: testRegressionWithLogitsInput

 def testRegressionWithLogitsInput(self):
   head = head_lib._regression_head()
   with ops.Graph().as_default(), session.Session():
     model_fn_ops = head.create_model_fn_ops(
         {},
         labels=((0.,), (1.,), (1.,)),
         mode=model_fn.ModeKeys.TRAIN,
         train_op_fn=_noop_train_op,
         logits_input=((0., 0.), (0., 0.), (0., 0.)))
     w = ("logits/weights:0", "logits/biases:0")
     _assert_variables(
         self, expected_global=w, expected_model=w, expected_trainable=w)
     variables.global_variables_initializer().run()
     _assert_summary_tags(self, ["loss"])
     _assert_metrics(self, 2. / 3, {"loss": 2. / 3}, model_fn_ops)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:15,代码来源:head_test.py

示例12: testRegressionWithWeights

 def testRegressionWithWeights(self):
   head = head_lib._regression_head(
       weight_column_name="label_weight")
   with tf.Graph().as_default(), tf.Session():
     weights = ((2.,), (5.,), (0.,))
     features = {"label_weight": tf.constant(weights)}
     prediction = tf.constant([[1.], [1.], [3.]])
     labels = tf.constant([[0.], [1.], [1.]])
     model_fn_ops = head.head_ops(features, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=prediction)
     _assert_no_variables(self)
     _assert_metrics(self, 2. / len(weights), {
         "loss": 2. / np.sum(weights)
     }, model_fn_ops)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:15,代码来源:head_test.py

示例13: testRegression

  def testRegression(self):
    head = head_lib._regression_head()
    with tf.Graph().as_default(), tf.Session() as sess:
      prediction = tf.constant([[1.], [1.], [3.]])
      labels = tf.constant([[0.], [1.], [1.]])
      model_fn_ops = head.head_ops({}, labels,
                                   tf.contrib.learn.ModeKeys.TRAIN,
                                   _noop_train_op, logits=prediction)
      self._assert_metrics(model_fn_ops)
      _assert_no_variables(self)
      self.assertAlmostEqual(5. / 3, sess.run(model_fn_ops.loss))

      model_fn_ops = head.head_ops({}, labels,
                                   tf.contrib.learn.ModeKeys.EVAL,
                                   _noop_train_op, logits=prediction)
      self.assertIsNone(model_fn_ops.train_op)
开发者ID:RapidApplicationDevelopment,项目名称:tensorflow,代码行数:16,代码来源:head_test.py

示例14: testRegressionWithCenteredBias

 def testRegressionWithCenteredBias(self):
   head = head_lib._regression_head(enable_centered_bias=True)
   with tf.Graph().as_default(), tf.Session():
     prediction = tf.constant([[1.], [1.], [3.]])
     labels = tf.constant([[0.], [1.], [1.]])
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=prediction)
     _assert_variables(self, expected_global=(
         "centered_bias_weight:0",
         "centered_bias_weight/Adagrad:0",
     ), expected_trainable=(
         "centered_bias_weight:0",
     ))
     tf.global_variables_initializer().run()
     _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:16,代码来源:head_test.py

示例15: testErrorInSparseTensorLabels

 def testErrorInSparseTensorLabels(self):
   head = head_lib._regression_head()
   with ops.Graph().as_default():
     prediction = constant_op.constant([[1.], [1.], [3.]])
     labels = sparse_tensor.SparseTensor(
         indices=constant_op.constant(
             [[0, 0], [1, 0], [2, 0]], dtype=dtypes.int64),
         values=constant_op.constant([0., 1., 1.]),
         dense_shape=[3, 1])
     with self.assertRaisesRegexp(ValueError,
                                  "SparseTensor is not supported as labels."):
       head.head_ops(
           {},
           labels,
           model_fn.ModeKeys.TRAIN,
           _noop_train_op,
           logits=prediction)
开发者ID:kadeng,项目名称:tensorflow,代码行数:17,代码来源:head_test.py


注:本文中的tensorflow.contrib.learn.python.learn.estimators.head._regression_head函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。