当前位置: 首页>>代码示例>>Python>>正文


Python head._multi_class_head函数代码示例

本文整理汇总了Python中tensorflow.contrib.learn.python.learn.estimators.head._multi_class_head函数的典型用法代码示例。如果您正苦于以下问题:Python _multi_class_head函数的具体用法?Python _multi_class_head怎么用?Python _multi_class_head使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了_multi_class_head函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testMultiClassWithInvalidNClass

 def testMultiClassWithInvalidNClass(self):
   try:
     head_lib._multi_class_head(n_classes=1)
     self.fail("Softmax with no n_classes did not raise error.")
   except ValueError:
     # Expected
     pass
开发者ID:kelvins22,项目名称:tensorflow,代码行数:7,代码来源:head_test.py

示例2: testTrain_withNoHeadWeights

  def testTrain_withNoHeadWeights(self):
    head1 = head_lib._multi_class_head(n_classes=3, label_name="label1",
                                       head_name="head1")
    head2 = head_lib._multi_class_head(n_classes=4, label_name="label2",
                                       head_name="head2")
    head = head_lib._multi_head([head1, head2])
    logits = tf.constant([[-0.7, 0.2, .1, .1, .1, .1, .1]])
    labels = {
        "label1": tf.constant([1]),
        "label2": tf.constant([1])

    }
    features = {"weights": tf.constant([2.0, 10.0])}
    model_fn_ops = head.head_ops(features, labels,
                                 tf.contrib.learn.ModeKeys.TRAIN,
                                 _noop_train_op, logits=logits)

    self.assertEquals(None, model_fn_ops.predictions)
    self.assertTrue(model_fn_ops.loss is not None)
    self.assertTrue(model_fn_ops.train_op is not None)
    self.assertFalse(model_fn_ops.eval_metric_ops)
    self.assertEquals(None, model_fn_ops.signature_fn)
    self.assertEquals(None, model_fn_ops.output_alternatives)

    with tf.Session() as sess:
      self.assertAlmostEqual(2.224, sess.run(model_fn_ops.loss), places=3)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:26,代码来源:head_test.py

示例3: testEval

  def testEval(self):
    head1 = head_lib._multi_class_head(n_classes=3, label_name="label1",
                                       head_name="head1")
    head2 = head_lib._multi_class_head(n_classes=4, label_name="label2",
                                       head_name="head2")
    head = head_lib._multi_head([head1, head2], [1, .5])
    logits = tf.constant([[-0.7, 0.2, .1, .1, .1, .1, .1]])
    labels = {
        "label1": tf.constant([1]),
        "label2": tf.constant([1])

    }
    features = {"weights": tf.constant([2.0, 10.0])}
    model_fn_ops = head.head_ops(features, labels,
                                 tf.contrib.learn.ModeKeys.EVAL,
                                 _noop_train_op, logits=logits)

    self.assertTrue(model_fn_ops.predictions)
    self.assertTrue(model_fn_ops.loss is not None)
    self.assertEquals(None, model_fn_ops.train_op)
    self.assertTrue(model_fn_ops.eval_metric_ops)
    self.assertEquals(None, model_fn_ops.signature_fn)
    self.assertEquals(None, model_fn_ops.output_alternatives)

    metric_ops = model_fn_ops.eval_metric_ops

    # Tests eval keys
    self.assertTrue("accuracy/head1" in metric_ops.keys())
    self.assertTrue("accuracy/head2" in metric_ops.keys())
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:29,代码来源:head_test.py

示例4: testInfer

  def testInfer(self):
    head1 = head_lib._multi_class_head(
        n_classes=3, label_name="label1", head_name="head1")
    head2 = head_lib._multi_class_head(
        n_classes=4, label_name="label2", head_name="head2")
    head = head_lib._multi_head([head1, head2], [1, .5])
    logits = constant_op.constant([[-0.7, 0.2, .1, .1, .1, .1, .1]])
    labels = {
        "label1": constant_op.constant([1]),
        "label2": constant_op.constant([1])
    }
    features = {"weights": constant_op.constant([2.0, 10.0])}
    model_fn_ops = head.head_ops(
        features,
        labels,
        model_fn.ModeKeys.INFER,
        _noop_train_op,
        logits=logits)

    self.assertTrue(model_fn_ops.predictions)
    self.assertEquals(None, model_fn_ops.loss)
    self.assertEquals(None, model_fn_ops.train_op)
    self.assertFalse(model_fn_ops.eval_metric_ops)
    self.assertEquals(None, model_fn_ops.signature_fn)
    self.assertTrue(len(model_fn_ops.output_alternatives) == 2)

    # Tests predictions keys
    pred_keys = model_fn_ops.predictions.keys()
    self.assertTrue(
        ("head1", prediction_key.PredictionKey.PROBABILITIES) in pred_keys)
    self.assertTrue(
        ("head1", prediction_key.PredictionKey.CLASSES) in pred_keys)
    self.assertTrue(
        ("head2", prediction_key.PredictionKey.PROBABILITIES) in pred_keys)
    self.assertTrue(
        ("head2", prediction_key.PredictionKey.CLASSES) in pred_keys)

    # Tests output alternative
    out_alts = model_fn_ops.output_alternatives
    self.assertEquals(constants.ProblemType.CLASSIFICATION,
                      out_alts["head1"][0])
    self.assertTrue(prediction_key.PredictionKey.PROBABILITIES in
                    out_alts["head1"][1].keys())
    self.assertTrue(
        prediction_key.PredictionKey.CLASSES in out_alts["head1"][1].keys())

    self.assertEquals(constants.ProblemType.CLASSIFICATION,
                      out_alts["head2"][0])
    self.assertTrue(prediction_key.PredictionKey.PROBABILITIES in
                    out_alts["head2"][1].keys())
    self.assertTrue(
        prediction_key.PredictionKey.CLASSES in out_alts["head2"][1].keys())
开发者ID:kadeng,项目名称:tensorflow,代码行数:52,代码来源:head_test.py

示例5: testJointLinearModel

  def testJointLinearModel(self):
    """Tests that loss goes down with training."""

    def input_fn():
      return {
          'age':
              sparse_tensor.SparseTensor(
                  values=['1'], indices=[[0, 0]], dense_shape=[1, 1]),
          'language':
              sparse_tensor.SparseTensor(
                  values=['english'], indices=[[0, 0]], dense_shape=[1, 1])
      }, constant_op.constant([[1]])

    language = feature_column.sparse_column_with_hash_bucket('language', 100)
    age = feature_column.sparse_column_with_hash_bucket('age', 2)

    head = head_lib._multi_class_head(n_classes=2)
    classifier = _joint_linear_estimator(head, feature_columns=[age, language])

    classifier.fit(input_fn=input_fn, steps=1000)
    loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss']
    classifier.fit(input_fn=input_fn, steps=2000)
    loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss']
    self.assertLess(loss2, loss1)
    self.assertLess(loss2, 0.01)
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:25,代码来源:composable_model_test.py

示例6: get_conv_classifier

def get_conv_classifier():
    n_classes = 5
    feature_columns = [layers.real_valued_column("", dimension=3)]

    # learning_rate = 1.0
    # optimizer = AdagradOptimizer(learning_rate)
    #
    # learning_rate = 1.0
    # optimizer = AdadeltaOptimizer(learning_rate=learning_rate)

    # ~ 62.55%
    learning_rate = 0.01
    optimizer = AdamOptimizer(learning_rate, epsilon=0.1)

    # learning_rate = 0.05
    # optimizer = GradientDescentOptimizer(learning_rate)

    # learning_rate = 0.1
    # optimizer = RMSPropOptimizer(learning_rate, momentum=0.1)

    # learning_rate = 0.1
    # optimizer = FtrlOptimizer(learning_rate)

    return SKCompat(Estimator(
        model_fn=get_conv_model,
        params={
            'head': head_lib._multi_class_head(  # pylint: disable=protected-access
                n_classes,
                enable_centered_bias=False),
            'feature_columns': feature_columns,
            'activation_fn': tf.nn.relu,
            'learning_rate': learning_rate,
            'optimizer': optimizer
        },
        model_dir='saved_model'))
开发者ID:soswow,项目名称:Various-JS-and-Python,代码行数:35,代码来源:machine_learning.py

示例7: testBinaryClassificationWithWeights

 def testBinaryClassificationWithWeights(self):
   n_classes = 2
   head = head_lib._multi_class_head(
       n_classes=n_classes, weight_column_name="label_weight")
   with tf.Graph().as_default(), tf.Session():
     weights = ((1.,), (0.,))
     features = {"label_weight": tf.constant(weights)}
     logits = tf.constant(self._logits)
     labels = tf.constant(self._labels)
     # logloss: z:label, x:logit
     # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
     model_fn_ops = head.head_ops(features, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=logits)
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     expected_total_loss = .31326166
     _assert_metrics(
         self, expected_total_loss / len(weights), {
             "accuracy": 1. / 1,
             "accuracy/baseline_label_mean": 1. / 1,
             "accuracy/threshold_0.500000_mean": 1. / 1,
             "auc": 0. / 1,
             "labels/actual_label_mean": 1. / 1,
             "labels/prediction_mean": .731059,  # softmax
             # TODO(ptucker): Is this the correct eval loss, sum not average?
             "loss": expected_total_loss,
             "precision/positive_threshold_0.500000_mean": 1. / 1,
             "recall/positive_threshold_0.500000_mean": 1. / 1,
         }, model_fn_ops)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:30,代码来源:head_test.py

示例8: testRaisesNonEmbeddingColumn

  def testRaisesNonEmbeddingColumn(self):
    one_hot_language = tf.contrib.layers.one_hot_column(
        tf.contrib.layers.sparse_column_with_hash_bucket('language', 10))

    params = {
        'feature_columns': [one_hot_language],
        'head': head_lib._multi_class_head(2),
        'hidden_units': [1],
        # Set lr mult to 0. to keep embeddings constant.
        'embedding_lr_multipliers': {
            one_hot_language: 0.0
        },
    }
    features = {
        'language':
            tf.SparseTensor(
                values=['en', 'fr', 'zh'],
                indices=[[0, 0], [1, 0], [2, 0]],
                dense_shape=[3, 1]),
    }
    labels = tf.constant([[0], [0], [0]], dtype=tf.int32)
    with self.assertRaisesRegexp(
        ValueError, 'can only be defined for embedding columns'):
      dnn._dnn_model_fn(features, labels,
                        tf.contrib.learn.ModeKeys.TRAIN, params)
开发者ID:moolighty,项目名称:tensorflow,代码行数:25,代码来源:dnn_test.py

示例9: testMultiClass

 def testMultiClass(self):
     head = head_lib._multi_class_head(n_classes=3)
     with tf.Graph().as_default(), tf.Session() as sess:
         logits = tf.constant([[1.0, 0.0, 0.0]])
         labels = tf.constant([2])
         # logloss: z:label, x:logit
         # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
         model_fn_ops = head.head_ops({}, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=logits)
         self.assertAlmostEqual(1.5514446, sess.run(model_fn_ops.loss))
开发者ID:yuikns,项目名称:tensorflow,代码行数:9,代码来源:head_test.py

示例10: testDNNModel

    def testDNNModel(self):
        """Tests multi-class classification using matrix data as input."""
        cont_features = [tf.contrib.layers.real_valued_column("feature", dimension=4)]

        head = head_lib._multi_class_head(n_classes=3)
        classifier = DNNEstimator(head, feature_columns=cont_features, hidden_units=[3, 3])

        classifier.fit(input_fn=_iris_input_fn, steps=1000)
        classifier.evaluate(input_fn=_iris_input_fn, steps=100)
开发者ID:brchiu,项目名称:tensorflow,代码行数:9,代码来源:composable_model_test.py

示例11: testBinaryClassification

 def testBinaryClassification(self):
     head = head_lib._multi_class_head(n_classes=2)
     with tf.Graph().as_default(), tf.Session() as sess:
         logits = tf.constant([[1.0], [1.0]])
         labels = tf.constant([[1.0], [0.0]])
         # logloss: z:label, x:logit
         # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
         model_fn_ops = head.head_ops({}, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=logits)
         self.assertAlmostEqual(0.81326175, sess.run(model_fn_ops.loss), delta=1e-6)
开发者ID:yuikns,项目名称:tensorflow,代码行数:9,代码来源:head_test.py

示例12: testErrorInSparseTensorLabels

 def testErrorInSparseTensorLabels(self):
     head = head_lib._multi_class_head(n_classes=2)
     with tf.Graph().as_default():
         prediction = tf.constant([[1.0], [1.0], [3.0]])
         labels = tf.SparseTensor(
             indices=tf.constant([[0, 0], [1, 0], [2, 0]], dtype=tf.int64),
             values=tf.constant([0, 1, 1]),
             shape=[3, 1],
         )
         with self.assertRaisesRegexp(ValueError, "SparseTensor is not supported as labels."):
             head.head_ops({}, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=prediction)
开发者ID:yuikns,项目名称:tensorflow,代码行数:11,代码来源:head_test.py

示例13: testBinaryClassification

 def testBinaryClassification(self):
   head = head_lib._multi_class_head(n_classes=2)
   with tf.Graph().as_default(), tf.Session() as sess:
     logits = tf.constant([[1.], [1.]])
     targets = tf.constant([[1.], [0.]])
     # logloss: z:label, x:logit
     # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
     model_fn_ops = head.head_ops({}, targets,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  None, logits=logits)
     self.assertAlmostEqual(.81326163, sess.run(model_fn_ops.loss))
开发者ID:Qstar,项目名称:tensorflow,代码行数:11,代码来源:head_test.py

示例14: testErrorInSparseTensorTarget

 def testErrorInSparseTensorTarget(self):
   head = head_lib._multi_class_head(n_classes=2)
   with tf.Graph().as_default():
     prediction = tf.constant([[1.], [1.], [3.]])
     targets = tf.SparseTensor(
         indices=tf.constant([[0, 0], [1, 0], [2, 0]], dtype=tf.int64),
         values=tf.constant([0, 1, 1]),
         shape=[3, 1])
     with self.assertRaisesRegexp(
         ValueError, "SparseTensor is not supported as a target"):
       head.head_ops({}, targets, tf.contrib.learn.ModeKeys.TRAIN, None,
                     logits=prediction)
开发者ID:Qstar,项目名称:tensorflow,代码行数:12,代码来源:head_test.py

示例15: testMultiClassWithWeight

 def testMultiClassWithWeight(self):
     head = head_lib._multi_class_head(n_classes=3, weight_column_name="label_weight")
     with tf.Graph().as_default(), tf.Session() as sess:
         features = {"label_weight": tf.constant([0.1])}
         logits = tf.constant([[1.0, 0.0, 0.0]])
         labels = tf.constant([2])
         # logloss: z:label, x:logit
         # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
         model_fn_ops = head.head_ops(
             features, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=logits
         )
         self.assertAlmostEqual(0.15514446, sess.run(model_fn_ops.loss))
开发者ID:yuikns,项目名称:tensorflow,代码行数:12,代码来源:head_test.py


注:本文中的tensorflow.contrib.learn.python.learn.estimators.head._multi_class_head函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。