当前位置: 首页>>代码示例>>Python>>正文


Python head._binary_svm_head函数代码示例

本文整理汇总了Python中tensorflow.contrib.learn.python.learn.estimators.head._binary_svm_head函数的典型用法代码示例。如果您正苦于以下问题:Python _binary_svm_head函数的具体用法?Python _binary_svm_head怎么用?Python _binary_svm_head使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了_binary_svm_head函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testBinarySVMDefaultWeights

 def testBinarySVMDefaultWeights(self):
     head = head_lib._binary_svm_head()
     predictions = tf.constant([[-0.5], [1.2]])
     labels = tf.constant([0, 1])
     model_fn_ops = head.head_ops({}, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=predictions)
     # Prediction for first example is in the right side of the hyperplane (i.e.,
     # < 0) but it is within the [-1,1] margin. There is a 0.5 loss incurred by
     # this example. The 2nd prediction is outside the margin so it incurs no
     # loss at all. The overall (normalized) loss is therefore 0.5/(1+1) = 0.25.
     with tf.Session() as sess:
         self.assertAlmostEqual(0.25, sess.run(model_fn_ops.loss))
开发者ID:yuikns,项目名称:tensorflow,代码行数:11,代码来源:head_test.py

示例2: testBinarySVMWithWeights

 def testBinarySVMWithWeights(self):
     head = head_lib._binary_svm_head(weight_column_name="weights")
     predictions = tf.constant([[-0.7], [0.2]])
     labels = tf.constant([0, 1])
     features = {"weights": tf.constant([2.0, 10.0])}
     model_fn_ops = head.head_ops(
         features, labels, tf.contrib.learn.ModeKeys.TRAIN, _noop_train_op, logits=predictions
     )
     # Prediction for both examples are in the right side of the hyperplane but
     # within the margin. The (weighted) loss incurred is 2*0.3=0.6 and 10*0.8=8
     # respectively. The overall (normalized) loss is therefore 8.6/12.
     with tf.Session() as sess:
         self.assertAlmostEqual(8.6 / 2, sess.run(model_fn_ops.loss), places=3)
开发者ID:yuikns,项目名称:tensorflow,代码行数:13,代码来源:head_test.py

示例3: testBinarySVMDefaultWeights

 def testBinarySVMDefaultWeights(self):
   head = head_lib._binary_svm_head()
   with tf.Graph().as_default(), tf.Session():
     predictions = tf.constant(self._predictions)
     labels = tf.constant(self._labels)
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=predictions)
     _assert_no_variables(self)
     expected_loss = np.average(self._expected_losses)
     _assert_metrics(self, expected_loss, {
         "accuracy": 1.,
         "loss": expected_loss,
     }, model_fn_ops)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:14,代码来源:head_test.py

示例4: testBinarySVMWithWeights

 def testBinarySVMWithWeights(self):
   head = head_lib._binary_svm_head(weight_column_name="weights")
   with tf.Graph().as_default(), tf.Session():
     predictions = tf.constant(self._predictions)
     labels = tf.constant(self._labels)
     weights = (7.0, 11.0)
     features = {"weights": tf.constant(weights)}
     model_fn_ops = head.head_ops(features, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=predictions)
     self._assert_metrics(model_fn_ops)
     _assert_no_variables(self)
     self.assertAlmostEqual(
         np.sum(np.multiply(weights, self._expected_losses)) / 2.0,
         model_fn_ops.loss.eval())
开发者ID:RapidApplicationDevelopment,项目名称:tensorflow,代码行数:15,代码来源:head_test.py

示例5: testBinarySVMWithLogits

 def testBinarySVMWithLogits(self):
   head = head_lib._binary_svm_head()
   with ops.Graph().as_default(), session.Session():
     model_fn_ops = head.create_model_fn_ops(
         {},
         self._labels,
         model_fn.ModeKeys.TRAIN,
         _noop_train_op,
         logits=self._predictions)
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     expected_loss = np.average(self._expected_losses)
     _assert_metrics(self, expected_loss, {
         "accuracy": 1.,
         "loss": expected_loss,
     }, model_fn_ops)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:16,代码来源:head_test.py

示例6: testBinarySVMWithLabelName

 def testBinarySVMWithLabelName(self):
   label_name = "my_label"
   head = head_lib._binary_svm_head(label_name=label_name)
   with tf.Graph().as_default(), tf.Session():
     predictions = tf.constant(self._predictions)
     labels = {label_name: tf.constant(self._labels)}
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=predictions)
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     expected_loss = np.average(self._expected_losses)
     _assert_metrics(self, expected_loss, {
         "accuracy": 1.,
         "loss": expected_loss,
     }, model_fn_ops)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:16,代码来源:head_test.py

示例7: testBinarySVMWithWeights

 def testBinarySVMWithWeights(self):
   head = head_lib._binary_svm_head(weight_column_name="weights")
   with tf.Graph().as_default(), tf.Session():
     predictions = tf.constant(self._predictions)
     labels = tf.constant(self._labels)
     weights = (7., 11.)
     features = {"weights": tf.constant(weights)}
     model_fn_ops = head.head_ops(features, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=predictions)
     _assert_no_variables(self)
     expected_weighted_sum = np.sum(np.multiply(
         weights, self._expected_losses))
     _assert_metrics(self, expected_weighted_sum / len(weights), {
         "accuracy": 1.,
         "loss": expected_weighted_sum / np.sum(weights),
     }, model_fn_ops)
开发者ID:Hwhitetooth,项目名称:tensorflow,代码行数:17,代码来源:head_test.py

示例8: testBinarySVMDefaultWeights

  def testBinarySVMDefaultWeights(self):
    head = head_lib._binary_svm_head()
    with tf.Graph().as_default(), tf.Session():
      predictions = tf.constant(self._predictions)
      labels = tf.constant(self._labels)
      model_fn_ops = head.head_ops({}, labels,
                                   tf.contrib.learn.ModeKeys.TRAIN,
                                   _noop_train_op, logits=predictions)
      self._assert_metrics(model_fn_ops)
      _assert_no_variables(self)
      self.assertAlmostEqual(
          np.average(self._expected_losses), model_fn_ops.loss.eval())

    model_fn_ops = head.head_ops({}, labels,
                                 tf.contrib.learn.ModeKeys.EVAL,
                                 _noop_train_op, logits=predictions)
    self.assertIsNone(model_fn_ops.train_op)
开发者ID:RapidApplicationDevelopment,项目名称:tensorflow,代码行数:17,代码来源:head_test.py

示例9: testBinarySVMWithCenteredBias

 def testBinarySVMWithCenteredBias(self):
   head = head_lib._binary_svm_head(enable_centered_bias=True)
   with tf.Graph().as_default(), tf.Session():
     predictions = tf.constant(self._predictions)
     labels = tf.constant(self._labels)
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=predictions)
     self._assert_metrics(model_fn_ops)
     _assert_variables(self, expected_global=(
         "centered_bias_weight:0",
         "centered_bias_weight/Adagrad:0",
     ), expected_trainable=(
         "centered_bias_weight:0",
     ))
     tf.global_variables_initializer().run()
     self.assertAlmostEqual(
         np.average(self._expected_losses), model_fn_ops.loss.eval())
开发者ID:RapidApplicationDevelopment,项目名称:tensorflow,代码行数:18,代码来源:head_test.py

示例10: testBinarySVMWithWeights

 def testBinarySVMWithWeights(self):
   head = head_lib._binary_svm_head(weight_column_name="weights")
   with ops.Graph().as_default(), session.Session():
     weights = (7., 11.)
     model_fn_ops = head.create_model_fn_ops(
         features={"weights": weights},
         labels=self._labels,
         mode=model_fn.ModeKeys.TRAIN,
         train_op_fn=_noop_train_op,
         logits=self._predictions)
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     expected_weighted_sum = np.sum(
         np.multiply(weights, self._expected_losses))
     _assert_metrics(self, expected_weighted_sum / len(weights), {
         "accuracy": 1.,
         "loss": expected_weighted_sum / np.sum(weights),
     }, model_fn_ops)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:18,代码来源:head_test.py

示例11: testBinarySVMWithLogitsInput

 def testBinarySVMWithLogitsInput(self):
   head = head_lib._binary_svm_head()
   with ops.Graph().as_default(), session.Session():
     model_fn_ops = head.create_model_fn_ops(
         {},
         self._labels,
         model_fn.ModeKeys.TRAIN,
         _noop_train_op,
         logits_input=((0., 0.), (0., 0.)))
     w = ("logits/weights:0", "logits/biases:0")
     _assert_variables(
         self, expected_global=w, expected_model=w, expected_trainable=w)
     variables.global_variables_initializer().run()
     _assert_summary_tags(self, ["loss"])
     expected_loss = 1.
     _assert_metrics(self, expected_loss, {
         "accuracy": .5,
         "loss": expected_loss,
     }, model_fn_ops)
开发者ID:ivankreso,项目名称:tensorflow,代码行数:19,代码来源:head_test.py

示例12: testBinarySVMEvalMode

 def testBinarySVMEvalMode(self):
   head = head_lib._binary_svm_head()
   with ops.Graph().as_default(), session.Session():
     predictions = constant_op.constant(self._predictions)
     labels = constant_op.constant(self._labels)
     model_fn_ops = head.head_ops(
         {},
         labels,
         model_fn.ModeKeys.EVAL,
         _noop_train_op,
         logits=predictions)
     self.assertIsNone(model_fn_ops.train_op)
     _assert_no_variables(self)
     _assert_summary_tags(self, ["loss"])
     expected_loss = np.average(self._expected_losses)
     _assert_metrics(self, expected_loss, {
         "accuracy": 1.,
         "loss": expected_loss,
     }, model_fn_ops)
开发者ID:kadeng,项目名称:tensorflow,代码行数:19,代码来源:head_test.py

示例13: testBinarySVMWithCenteredBias

 def testBinarySVMWithCenteredBias(self):
   head = head_lib._binary_svm_head(enable_centered_bias=True)
   with tf.Graph().as_default(), tf.Session():
     predictions = tf.constant(self._predictions)
     labels = tf.constant(self._labels)
     model_fn_ops = head.head_ops({}, labels,
                                  tf.contrib.learn.ModeKeys.TRAIN,
                                  _noop_train_op, logits=predictions)
     _assert_variables(self, expected_global=(
         "centered_bias_weight:0",
         "centered_bias_weight/Adagrad:0",
     ), expected_trainable=(
         "centered_bias_weight:0",
     ))
     tf.global_variables_initializer().run()
     _assert_summary_tags(self, ["loss", "centered_bias/bias_0"])
     expected_loss = np.average(self._expected_losses)
     _assert_metrics(self, expected_loss, {
         "accuracy": 1.,
         "loss": expected_loss,
     }, model_fn_ops)
开发者ID:kdavis-mozilla,项目名称:tensorflow,代码行数:21,代码来源:head_test.py

示例14: sdca_classifier_model_fn

def sdca_classifier_model_fn(features, targets, mode, params):
  """Linear classifier model_fn that uses the SDCA optimizer.

  Args:
    features: A dict of `Tensor` keyed by column name.
    targets: `Tensor` of shape [batch_size, 1] or [batch_size] target labels of
      dtype `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    params: A dict of hyperparameters.
      The following hyperparameters are expected:
      * feature_columns: An iterable containing all the feature columns used by
          the model.
      * optimizer: An `SDCAOptimizer` instance.
      * weight_column_name: A string defining the weight feature column, or
          None if there are no weights.
      * loss_type: A string. Must be either "logistic_loss" or "hinge_loss".
      * update_weights_hook: A `SessionRunHook` object or None. Used to update
          model weights.

  Returns:
    predictions: A dict of `Tensor` objects.
    loss: A scalar containing the loss of the step.
    train_op: The op for training.

  Raises:
    ValueError: If `optimizer` is not an `SDCAOptimizer` instance.
    ValueError: If mode is not any of the `ModeKeys`.
  """
  feature_columns = params["feature_columns"]
  optimizer = params["optimizer"]
  weight_column_name = params["weight_column_name"]
  loss_type = params.get("loss_type", None)
  update_weights_hook = params.get("update_weights_hook")

  if not isinstance(optimizer, sdca_optimizer.SDCAOptimizer):
    raise ValueError("Optimizer must be of type SDCAOptimizer")

  logits, columns_to_variables, bias = (
      layers.weighted_sum_from_feature_columns(
          columns_to_tensors=features,
          feature_columns=feature_columns,
          num_outputs=1))

  _add_bias_column(feature_columns, features, bias, targets,
                   columns_to_variables)

  if loss_type is "hinge_loss":
    head = head_lib._binary_svm_head(  # pylint: disable=protected-access
        weight_column_name=weight_column_name,
        enable_centered_bias=False)
  else:
    # pylint: disable=protected-access
    head = head_lib._multi_class_head(2,  # pylint: disable=protected-access
                                      weight_column_name=weight_column_name,
                                      enable_centered_bias=False)
  def _train_op_fn(unused_loss):
    global_step = contrib_variables.get_global_step()
    sdca_model, train_op = optimizer.get_train_step(columns_to_variables,
                                                    weight_column_name,
                                                    loss_type, features,
                                                    targets, global_step)
    if update_weights_hook is not None:
      update_weights_hook.set_parameters(sdca_model, train_op)
    return train_op

  return head.head_ops(features, targets, mode, _train_op_fn, logits)
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:67,代码来源:linear.py

示例15: __init__

  def __init__(self,
               example_id_column,
               feature_columns,
               weight_column_name=None,
               model_dir=None,
               l1_regularization=0.0,
               l2_regularization=0.0,
               num_loss_partitions=1,
               kernels=None,
               config=None,
               feature_engineering_fn=None):
    """Constructs a `SVM~ estimator object.

    Args:
      example_id_column: A string defining the feature column name representing
        example ids. Used to initialize the underlying optimizer.
      feature_columns: An iterable containing all the feature columns used by
        the model. All items in the set should be instances of classes derived
        from `FeatureColumn`.
      weight_column_name: A string defining feature column name representing
        weights. It is used to down weight or boost examples during training. It
        will be multiplied by the loss of the example.
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator to
        continue training a previously saved model.
      l1_regularization: L1-regularization parameter. Refers to global L1
        regularization (across all examples).
      l2_regularization: L2-regularization parameter. Refers to global L2
        regularization (across all examples).
      num_loss_partitions: number of partitions of the (global) loss function
        optimized by the underlying optimizer (SDCAOptimizer).
      kernels: A list of kernels for the SVM. Currently, no kernels are
        supported. Reserved for future use for non-linear SVMs.
      config: RunConfig object to configure the runtime settings.
      feature_engineering_fn: Feature engineering function. Takes features and
                        labels which are the output of `input_fn` and
                        returns features and labels which will be fed
                        into the model.

    Raises:
      ValueError: if kernels passed is not None.
    """
    if kernels is not None:
      raise ValueError("Kernel SVMs are not currently supported.")
    self._optimizer = sdca_optimizer.SDCAOptimizer(
        example_id_column=example_id_column,
        num_loss_partitions=num_loss_partitions,
        symmetric_l1_regularization=l1_regularization,
        symmetric_l2_regularization=l2_regularization)

    self._feature_columns = feature_columns
    self._model_dir = model_dir or tempfile.mkdtemp()
    self._chief_hook = linear._SdcaUpdateWeightsHook()  # pylint: disable=protected-access
    self._estimator = estimator.Estimator(
        model_fn=linear.sdca_model_fn,
        model_dir=self._model_dir,
        config=config,
        params={
            "head": head_lib._binary_svm_head(  # pylint: disable=protected-access
                weight_column_name=weight_column_name,
                enable_centered_bias=False),
            "feature_columns": feature_columns,
            "optimizer": self._optimizer,
            "weight_column_name": weight_column_name,
            "update_weights_hook": self._chief_hook,
        },
        feature_engineering_fn=feature_engineering_fn)
    if not self._estimator.config.is_chief:
      self._chief_hook = None
开发者ID:DavidNemeskey,项目名称:tensorflow,代码行数:69,代码来源:svm.py


注:本文中的tensorflow.contrib.learn.python.learn.estimators.head._binary_svm_head函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。