当前位置: 首页>>代码示例>>Python>>正文


Python learn.infer_real_valued_columns_from_input函数代码示例

本文整理汇总了Python中tensorflow.contrib.learn.python.learn.infer_real_valued_columns_from_input函数的典型用法代码示例。如果您正苦于以下问题:Python infer_real_valued_columns_from_input函数的具体用法?Python infer_real_valued_columns_from_input怎么用?Python infer_real_valued_columns_from_input使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了infer_real_valued_columns_from_input函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testIrisStreaming

  def testIrisStreaming(self):
    iris = datasets.load_iris()

    def iris_data():
      while True:
        for x in iris.data:
          yield x

    def iris_predict_data():
      for x in iris.data:
        yield x

    def iris_target():
      while True:
        for y in iris.target:
          yield y

    classifier = learn.TensorFlowLinearClassifier(
        feature_columns=learn.infer_real_valued_columns_from_input(iris.data),
        n_classes=3, steps=100)
    classifier.fit(iris_data(), iris_target())
    score1 = accuracy_score(iris.target, classifier.predict(iris.data))
    score2 = accuracy_score(iris.target,
                            classifier.predict(iris_predict_data()))
    self.assertGreater(score1, 0.5, "Failed with score = {0}".format(score1))
    self.assertEqual(score2, score1, "Scores from {0} iterator doesn't "
                     "match score {1} from full "
                     "data.".format(score2, score1))
开发者ID:AntHar,项目名称:tensorflow,代码行数:28,代码来源:base_test.py

示例2: testIris

 def testIris(self):
   iris = datasets.load_iris()
   classifier = learn.TensorFlowLinearClassifier(
       feature_columns=learn.infer_real_valued_columns_from_input(iris.data),
       n_classes=3)
   classifier.fit(iris.data, [x for x in iris.target])
   score = accuracy_score(iris.target, classifier.predict(iris.data))
   self.assertGreater(score, 0.7, "Failed with score = {0}".format(score))
开发者ID:AntHar,项目名称:tensorflow,代码行数:8,代码来源:base_test.py

示例3: testBoston

 def testBoston(self):
   random.seed(42)
   boston = datasets.load_boston()
   regressor = learn.LinearRegressor(
       feature_columns=learn.infer_real_valued_columns_from_input(boston.data))
   regressor.fit(boston.data, boston.target, max_steps=500)
   score = mean_squared_error(boston.target, regressor.predict(boston.data))
   self.assertLess(score, 150, "Failed with score = {0}".format(score))
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:8,代码来源:base_test.py

示例4: get_classification_score

def get_classification_score(train_encodings, train_labels, test_encodings, test_labels, steps):
    feature_columns = learn.infer_real_valued_columns_from_input(train_encodings)
    classifier = learn.DNNClassifier(hidden_units=[32, 16], n_classes=10, feature_columns=feature_columns)
    classifier.fit(train_encodings, train_labels, steps=steps, batch_size=32)

    # For measuring accuracy
    test_predictions = list(classifier.predict(test_encodings, as_iterable=True))
    score = metrics.accuracy_score(test_labels, test_predictions)
    return score
开发者ID:Jakobovski,项目名称:coremind,代码行数:9,代码来源:supervised_encoding_classifier.py

示例5: testOneDim

 def testOneDim(self):
   random.seed(42)
   x = np.random.rand(1000)
   y = 2 * x + 3
   feature_columns = learn.infer_real_valued_columns_from_input(x)
   regressor = learn.TensorFlowLinearRegressor(feature_columns=feature_columns)
   regressor.fit(x, y)
   score = mean_squared_error(y, regressor.predict(x))
   self.assertLess(score, 1.0, "Failed with score = {0}".format(score))
开发者ID:AntHar,项目名称:tensorflow,代码行数:9,代码来源:base_test.py

示例6: testIrisSummaries

 def testIrisSummaries(self):
   iris = datasets.load_iris()
   output_dir = tempfile.mkdtemp() + "learn_tests/"
   classifier = learn.TensorFlowLinearClassifier(
       feature_columns=learn.infer_real_valued_columns_from_input(iris.data),
       n_classes=3, model_dir=output_dir)
   classifier.fit(iris.data, iris.target)
   score = accuracy_score(iris.target, classifier.predict(iris.data))
   self.assertGreater(score, 0.5, "Failed with score = {0}".format(score))
开发者ID:AntHar,项目名称:tensorflow,代码行数:9,代码来源:base_test.py

示例7: testIrisClassWeight

 def testIrisClassWeight(self):
   iris = datasets.load_iris()
   # Note, class_weight are not supported anymore :( Use weight_column.
   with self.assertRaises(ValueError):
     classifier = learn.TensorFlowLinearClassifier(
         feature_columns=learn.infer_real_valued_columns_from_input(iris.data),
         n_classes=3, class_weight=[0.1, 0.8, 0.1])
     classifier.fit(iris.data, iris.target)
     score = accuracy_score(iris.target, classifier.predict(iris.data))
     self.assertLess(score, 0.7, "Failed with score = {0}".format(score))
开发者ID:AntHar,项目名称:tensorflow,代码行数:10,代码来源:base_test.py

示例8: testIris_proba

 def testIris_proba(self):
   # If sklearn available.
   if log_loss:
     random.seed(42)
     iris = datasets.load_iris()
     classifier = learn.TensorFlowClassifier(
         feature_columns=learn.infer_real_valued_columns_from_input(iris.data),
         n_classes=3, steps=250)
     classifier.fit(iris.data, iris.target)
     score = log_loss(iris.target, classifier.predict_proba(iris.data))
     self.assertLess(score, 0.8, "Failed with score = {0}".format(score))
开发者ID:AntHar,项目名称:tensorflow,代码行数:11,代码来源:base_test.py

示例9: testBoston

 def testBoston(self):
   random.seed(42)
   boston = datasets.load_boston()
   regressor = learn.TensorFlowLinearRegressor(
       feature_columns=learn.infer_real_valued_columns_from_input(boston.data),
       batch_size=boston.data.shape[0],
       steps=500,
       learning_rate=0.001)
   regressor.fit(boston.data, boston.target)
   score = mean_squared_error(boston.target, regressor.predict(boston.data))
   self.assertLess(score, 150, "Failed with score = {0}".format(score))
开发者ID:AntHar,项目名称:tensorflow,代码行数:11,代码来源:base_test.py

示例10: testMultiRegression

 def testMultiRegression(self):
   random.seed(42)
   rng = np.random.RandomState(1)
   x = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
   y = np.array([np.pi * np.sin(x).ravel(), np.pi * np.cos(x).ravel()]).T
   regressor = learn.LinearRegressor(
       feature_columns=learn.infer_real_valued_columns_from_input(x),
       target_dimension=2)
   regressor.fit(x, y, steps=100)
   score = mean_squared_error(regressor.predict(x), y)
   self.assertLess(score, 10, "Failed with score = {0}".format(score))
开发者ID:JamesFysh,项目名称:tensorflow,代码行数:11,代码来源:multioutput_test.py

示例11: testIrisContinueTraining

 def testIrisContinueTraining(self):
   iris = datasets.load_iris()
   classifier = learn.LinearClassifier(
       feature_columns=learn.infer_real_valued_columns_from_input(iris.data),
       n_classes=3)
   classifier.fit(iris.data, iris.target, steps=100)
   score1 = accuracy_score(iris.target, classifier.predict(iris.data))
   classifier.fit(iris.data, iris.target, steps=500)
   score2 = accuracy_score(iris.target, classifier.predict(iris.data))
   self.assertGreater(
       score2, score1,
       "Failed with score2 {0} <= score1 {1}".format(score2, score1))
开发者ID:MostafaGazar,项目名称:tensorflow,代码行数:12,代码来源:base_test.py

示例12: testIrisES

  def testIrisES(self):
    random.seed(42)

    iris = datasets.load_iris()
    x_train, x_test, y_train, y_test = train_test_split(
        iris.data, iris.target, test_size=0.2, random_state=42)

    x_train, x_val, y_train, y_val = train_test_split(
        x_train, y_train, test_size=0.2, random_state=42)
    val_monitor = learn.monitors.ValidationMonitor(
        x_val, y_val, every_n_steps=50, early_stopping_rounds=100,
        early_stopping_metric='loss', early_stopping_metric_minimize=False)

    feature_columns = learn.infer_real_valued_columns_from_input(iris.data)

    # classifier without early stopping - overfitting
    classifier1 = learn.DNNClassifier(
        feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3)
    classifier1.fit(x_train, y_train, steps=1000)
    _ = accuracy_score(y_test, classifier1.predict(x_test))

    # Full 1000 steps, 19 summaries and no evaluation summary:
    # 1 summary of net at step 1
    # 9 x (1 summary of net and 1 summary of global step) for steps 101, 201,...
    self.assertEqual(19, len(_get_summary_events(classifier1.model_dir)))
    with self.assertRaises(ValueError):
      _get_summary_events(classifier1.model_dir + '/eval')

    # classifier with early stopping - improved accuracy on testing set
    classifier2 = learn.DNNClassifier(
        hidden_units=[10, 20, 10], feature_columns=feature_columns, n_classes=3,
        config=tf.contrib.learn.RunConfig(save_checkpoints_secs=1))

    classifier2.fit(x_train, y_train, monitors=[val_monitor], steps=2000)
    _ = accuracy_score(y_val, classifier2.predict(x_val))
    _ = accuracy_score(y_test, classifier2.predict(x_test))

    # Note, this test is unstable, so not checking for equality.
    # See stability_test for examples of stability issues.
    if val_monitor.early_stopped:
      self.assertLess(val_monitor.best_step, 2000)
      # Note, due to validation monitor stopping after the best score occur,
      # the accuracy at current checkpoint is less.
      # TODO(ipolosukhin): Time machine for restoring old checkpoints?
      # flaky, still not always best_value better then score2 value.
      # self.assertGreater(val_monitor.best_value, score2_val)

      # Early stopped, unstable so checking only < then max.
      self.assertLess(len(_get_summary_events(classifier2.model_dir)), 21)
      # Eval typically has ~6 events, but it varies based on the run.
      self.assertLess(len(_get_summary_events(
          classifier2.model_dir + '/eval')), 8)
开发者ID:apollos,项目名称:tensorflow,代码行数:52,代码来源:early_stopping_test.py

示例13: test_pandas_series

 def test_pandas_series(self):
   if HAS_PANDAS:
     import pandas as pd  # pylint: disable=g-import-not-at-top
     random.seed(42)
     iris = datasets.load_iris()
     data = pd.DataFrame(iris.data)
     labels = pd.Series(iris.target)
     classifier = learn.LinearClassifier(
         feature_columns=learn.infer_real_valued_columns_from_input(data),
         n_classes=3)
     classifier.fit(data, labels, steps=100)
     score = accuracy_score(labels, list(classifier.predict(data)))
     self.assertGreater(score, 0.5, "Failed with score = {0}".format(score))
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:13,代码来源:io_test.py

示例14: testIrisDNN

 def testIrisDNN(self):
   if HAS_SKLEARN:
     random.seed(42)
     iris = datasets.load_iris()
     feature_columns = learn.infer_real_valued_columns_from_input(iris.data)
     classifier = learn.DNNClassifier(
         feature_columns=feature_columns, hidden_units=[10, 20, 10],
         n_classes=3)
     grid_search = GridSearchCV(classifier,
                                {'hidden_units': [[5, 5], [10, 10]]},
                                scoring='accuracy',
                                fit_params={'steps': [50]})
     grid_search.fit(iris.data, iris.target)
     score = accuracy_score(iris.target, grid_search.predict(iris.data))
     self.assertGreater(score, 0.5, 'Failed with score = {0}'.format(score))
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:15,代码来源:grid_search_test.py

示例15: test_pandas_dataframe

 def test_pandas_dataframe(self):
   if HAS_PANDAS:
     import pandas as pd  # pylint: disable=g-import-not-at-top
     random.seed(42)
     iris = datasets.load_iris()
     data = pd.DataFrame(iris.data)
     labels = pd.DataFrame(iris.target)
     classifier = learn.TensorFlowLinearClassifier(
         feature_columns=learn.infer_real_valued_columns_from_input(data),
         n_classes=3)
     classifier.fit(data, labels)
     score = accuracy_score(labels[0], classifier.predict(data))
     self.assertGreater(score, 0.5, "Failed with score = {0}".format(score))
   else:
     print("No pandas installed. pandas-related tests are skipped.")
开发者ID:AntHar,项目名称:tensorflow,代码行数:15,代码来源:io_test.py


注:本文中的tensorflow.contrib.learn.python.learn.infer_real_valued_columns_from_input函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。