当前位置: 首页>>代码示例>>Python>>正文


Python feature_column.sparse_column_with_keys函数代码示例

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.feature_column.sparse_column_with_keys函数的典型用法代码示例。如果您正苦于以下问题:Python sparse_column_with_keys函数的具体用法?Python sparse_column_with_keys怎么用?Python sparse_column_with_keys使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了sparse_column_with_keys函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testSharedEmbeddingColumn

  def testSharedEmbeddingColumn(self):
    a1 = fc.sparse_column_with_keys("a1", ["marlo", "omar", "stringer"])
    a2 = fc.sparse_column_with_keys("a2", ["marlo", "omar", "stringer"])
    b = fc.shared_embedding_columns([a1, a2], dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(b[0].shared_embedding_name, "a1_a2_shared_embedding")
    self.assertEqual(b[1].shared_embedding_name, "a1_a2_shared_embedding")

    # Create a sparse id tensor for a1.
    input_tensor_c1 = sparse_tensor_lib.SparseTensor(
        indices=[[0, 0], [1, 1], [2, 2]], values=[0, 1, 2], dense_shape=[3, 3])
    # Create a sparse id tensor for a2.
    input_tensor_c2 = sparse_tensor_lib.SparseTensor(
        indices=[[0, 0], [1, 1], [2, 2]], values=[0, 1, 2], dense_shape=[3, 3])
    with variable_scope.variable_scope("run_1"):
      b1 = feature_column_ops.input_from_feature_columns({
          b[0]: input_tensor_c1
      }, [b[0]])
      b2 = feature_column_ops.input_from_feature_columns({
          b[1]: input_tensor_c2
      }, [b[1]])
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      b1_value = b1.eval()
      b2_value = b2.eval()
    for i in range(len(b1_value)):
      self.assertAllClose(b1_value[i], b2_value[i])

    # Test the case when a shared_embedding_name is explictly specified.
    d = fc.shared_embedding_columns(
        [a1, a2],
        dimension=4,
        combiner="mean",
        shared_embedding_name="my_shared_embedding")
    # a3 is a completely different sparse column with a1 and a2, but since the
    # same shared_embedding_name is passed in, a3 will have the same embedding
    # as a1 and a2
    a3 = fc.sparse_column_with_keys("a3", ["cathy", "tom", "anderson"])
    e = fc.shared_embedding_columns(
        [a3],
        dimension=4,
        combiner="mean",
        shared_embedding_name="my_shared_embedding")
    with variable_scope.variable_scope("run_2"):
      d1 = feature_column_ops.input_from_feature_columns({
          d[0]: input_tensor_c1
      }, [d[0]])
      e1 = feature_column_ops.input_from_feature_columns({
          e[0]: input_tensor_c1
      }, [e[0]])
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      d1_value = d1.eval()
      e1_value = e1.eval()
    for i in range(len(d1_value)):
      self.assertAllClose(d1_value[i], e1_value[i])
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:56,代码来源:feature_column_test.py

示例2: testSharedEmbeddingColumnDeepCopy

 def testSharedEmbeddingColumnDeepCopy(self):
   a1 = fc.sparse_column_with_keys("a1", ["marlo", "omar", "stringer"])
   a2 = fc.sparse_column_with_keys("a2", ["marlo", "omar", "stringer"])
   columns = fc.shared_embedding_columns(
       [a1, a2], dimension=4, combiner="mean")
   columns_copy = copy.deepcopy(columns)
   self.assertEqual(
       columns_copy[0].shared_embedding_name, "a1_a2_shared_embedding")
   self.assertEqual(
       columns_copy[1].shared_embedding_name, "a1_a2_shared_embedding")
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:10,代码来源:feature_column_test.py

示例3: testSharedEmbeddingColumnErrors

  def testSharedEmbeddingColumnErrors(self):
    # Tries passing in a string.
    with self.assertRaises(TypeError):
      invalid_string = "Invalid string."
      fc.shared_embedding_columns(invalid_string, dimension=2, combiner="mean")

    # Tries passing in a set of sparse columns.
    with self.assertRaises(TypeError):
      invalid_set = set([
          fc.sparse_column_with_keys("a", ["foo", "bar"]),
          fc.sparse_column_with_keys("b", ["foo", "bar"]),
      ])
      fc.shared_embedding_columns(invalid_set, dimension=2, combiner="mean")
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:13,代码来源:feature_column_test.py

示例4: testFloat32WeightedSparseStringColumnDtypes

 def testFloat32WeightedSparseStringColumnDtypes(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   weighted_ids = fc.weighted_sparse_column(ids, "weights")
   self.assertDictEqual({
       "ids": parsing_ops.VarLenFeature(dtypes.string),
       "weights": parsing_ops.VarLenFeature(dtypes.float32)
   }, weighted_ids.config)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py

示例5: testFloat32WeightedSparseInt32ColumnDtypes

 def testFloat32WeightedSparseInt32ColumnDtypes(self):
   ids = fc.sparse_column_with_keys("ids", [42, 1, -1000], dtype=dtypes.int32)
   weighted_ids = fc.weighted_sparse_column(ids, "weights")
   self.assertDictEqual({
       "ids": parsing_ops.VarLenFeature(dtypes.int32),
       "weights": parsing_ops.VarLenFeature(dtypes.float32)
   }, weighted_ids.config)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py

示例6: testOneHotColumnDeepCopy

 def testOneHotColumnDeepCopy(self):
   a = fc.sparse_column_with_keys("a", ["a", "b", "c", "d"])
   column = fc.one_hot_column(a)
   column_copy = copy.deepcopy(column)
   self.assertEqual(column_copy.sparse_id_column.name, "a")
   self.assertEqual(column.name, "a_one_hot")
   self.assertEqual(column.length, 4)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py

示例7: testWeightedSparseColumnDeepCopy

 def testWeightedSparseColumnDeepCopy(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   weighted = fc.weighted_sparse_column(ids, "weights")
   weighted_copy = copy.deepcopy(weighted)
   self.assertEqual(weighted_copy.sparse_id_column.name, "ids")
   self.assertEqual(weighted_copy.weight_column_name, "weights")
   self.assertEqual(weighted_copy.name, "ids_weighted_by_weights")
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py

示例8: test_exogenous_input

 def test_exogenous_input(self):
   """Test that no errors are raised when using exogenous features."""
   dtype = dtypes.float64
   times = [1, 2, 3, 4, 5, 6]
   values = [[0.01], [5.10], [5.21], [0.30], [5.41], [0.50]]
   feature_a = [["off"], ["on"], ["on"], ["off"], ["on"], ["off"]]
   sparse_column_a = feature_column.sparse_column_with_keys(
       column_name="feature_a", keys=["on", "off"])
   one_hot_a = layers.one_hot_column(sparse_id_column=sparse_column_a)
   regressor = estimators.StructuralEnsembleRegressor(
       periodicities=[],
       num_features=1,
       moving_average_order=0,
       exogenous_feature_columns=[one_hot_a],
       dtype=dtype)
   features = {TrainEvalFeatures.TIMES: times,
               TrainEvalFeatures.VALUES: values,
               "feature_a": feature_a}
   train_input_fn = input_pipeline.RandomWindowInputFn(
       input_pipeline.NumpyReader(features),
       window_size=6, batch_size=1)
   regressor.train(input_fn=train_input_fn, steps=1)
   eval_input_fn = input_pipeline.WholeDatasetInputFn(
       input_pipeline.NumpyReader(features))
   evaluation = regressor.evaluate(input_fn=eval_input_fn, steps=1)
   predict_input_fn = input_pipeline.predict_continuation_input_fn(
       evaluation, times=[[7, 8, 9]],
       exogenous_features={"feature_a": [[["on"], ["off"], ["on"]]]})
   regressor.predict(input_fn=predict_input_fn)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:29,代码来源:structural_ensemble_test.py

示例9: setUp

  def setUp(self):
    super(DynamicRnnEstimatorTest, self).setUp()
    self.rnn_cell = core_rnn_cell_impl.BasicRNNCell(self.NUM_RNN_CELL_UNITS)
    self.mock_target_column = MockTargetColumn(
        num_label_columns=self.NUM_LABEL_COLUMNS)

    location = feature_column.sparse_column_with_keys(
        'location', keys=['west_side', 'east_side', 'nyc'])
    location_onehot = feature_column.one_hot_column(location)
    self.context_feature_columns = [location_onehot]

    wire_cast = feature_column.sparse_column_with_keys(
        'wire_cast', ['marlo', 'omar', 'stringer'])
    wire_cast_embedded = feature_column.embedding_column(wire_cast, dimension=8)
    measurements = feature_column.real_valued_column(
        'measurements', dimension=2)
    self.sequence_feature_columns = [measurements, wire_cast_embedded]
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:17,代码来源:dynamic_rnn_estimator_test.py

示例10: testMissingValueInOneHotColumnForSparseColumnWithKeys

 def testMissingValueInOneHotColumnForSparseColumnWithKeys(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   one_hot = fc.one_hot_column(ids)
   features = {"ids": constant_op.constant([["marlo", "unknown", "omar"]])}
   one_hot_tensor = feature_column_ops.input_from_feature_columns(
       features, [one_hot])
   with self.test_session() as sess:
     sess.run(variables.global_variables_initializer())
     sess.run(lookup_ops.tables_initializer())
     self.assertAllEqual([[1., 1., 0.]], one_hot_tensor.eval())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:10,代码来源:feature_column_test.py

示例11: testOneHotColumn

  def testOneHotColumn(self):
    a = fc.sparse_column_with_keys("a", ["a", "b", "c", "d"])
    onehot_a = fc.one_hot_column(a)
    self.assertEqual(onehot_a.sparse_id_column.name, "a")
    self.assertEqual(onehot_a.length, 4)

    b = fc.sparse_column_with_hash_bucket(
        "b", hash_bucket_size=100, combiner="sum")
    onehot_b = fc.one_hot_column(b)
    self.assertEqual(onehot_b.sparse_id_column.name, "b")
    self.assertEqual(onehot_b.length, 100)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:11,代码来源:feature_column_test.py

示例12: testSharedEmbeddingColumnDeterminism

 def testSharedEmbeddingColumnDeterminism(self):
   # Tests determinism in auto-generated shared_embedding_name.
   sparse_id_columns = tuple([
       fc.sparse_column_with_keys(k, ["foo", "bar"])
       for k in ["07", "02", "00", "03", "05", "01", "09", "06", "04", "08"]
   ])
   output = fc.shared_embedding_columns(
       sparse_id_columns, dimension=2, combiner="mean")
   self.assertEqual(len(output), 10)
   for x in output:
     self.assertEqual(x.shared_embedding_name,
                      "00_01_02_plus_7_others_shared_embedding")
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:12,代码来源:feature_column_test.py

示例13: testInt32WeightedSparseInt64ColumnDtypes

  def testInt32WeightedSparseInt64ColumnDtypes(self):
    ids = fc.sparse_column_with_keys("ids", [42, 1, -1000], dtype=dtypes.int64)
    weighted_ids = fc.weighted_sparse_column(ids, "weights", dtype=dtypes.int32)
    self.assertDictEqual({
        "ids": parsing_ops.VarLenFeature(dtypes.int64),
        "weights": parsing_ops.VarLenFeature(dtypes.int32)
    }, weighted_ids.config)

    with self.assertRaisesRegexp(ValueError,
                                 "dtype is not convertible to float"):
      weighted_ids = fc.weighted_sparse_column(
          ids, "weights", dtype=dtypes.string)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:12,代码来源:feature_column_test.py

示例14: testSparseColumnKeysDeepCopy

 def testSparseColumnKeysDeepCopy(self):
   """Tests deepcopy of sparse_column_with_keys."""
   column = fc.sparse_column_with_keys("a", keys=["key0", "key1", "key2"])
   self.assertEqual("a", column.name)
   column_copy = copy.deepcopy(column)
   self.assertEqual("a", column_copy.name)
   self.assertEqual(
       fc._SparseIdLookupConfig(  # pylint: disable=protected-access
           keys=("key0", "key1", "key2"),
           vocab_size=3,
           default_value=-1),
       column_copy.lookup_config)
   self.assertFalse(column_copy.is_integerized)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:13,代码来源:feature_column_test.py

示例15: testSharedEmbeddingColumnWithWeightedSparseColumn

  def testSharedEmbeddingColumnWithWeightedSparseColumn(self):
    # Tests creation of shared embeddings containing weighted sparse columns.
    sparse_col = fc.sparse_column_with_keys("a1", ["marlo", "omar", "stringer"])
    ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
    weighted_sparse_col = fc.weighted_sparse_column(ids, "weights")
    self.assertEqual(weighted_sparse_col.name, "ids_weighted_by_weights")

    b = fc.shared_embedding_columns([sparse_col, weighted_sparse_col],
                                    dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(b[0].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")
    self.assertEqual(b[1].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")

    # Tries reversing order to check compatibility condition.
    b = fc.shared_embedding_columns([weighted_sparse_col, sparse_col],
                                    dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(b[0].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")
    self.assertEqual(b[1].shared_embedding_name,
                     "a1_ids_weighted_by_weights_shared_embedding")

    # Tries adding two weighted columns to check compatibility between them.
    weighted_sparse_col_2 = fc.weighted_sparse_column(ids, "weights_2")
    b = fc.shared_embedding_columns([weighted_sparse_col,
                                     weighted_sparse_col_2],
                                    dimension=4, combiner="mean")
    self.assertEqual(len(b), 2)
    self.assertEqual(
        b[0].shared_embedding_name,
        "ids_weighted_by_weights_ids_weighted_by_weights_2_shared_embedding"
    )
    self.assertEqual(
        b[1].shared_embedding_name,
        "ids_weighted_by_weights_ids_weighted_by_weights_2_shared_embedding"
    )
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:38,代码来源:feature_column_test.py


注:本文中的tensorflow.contrib.layers.python.layers.feature_column.sparse_column_with_keys函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。