当前位置: 首页>>代码示例>>Python>>正文


Python feature_column.one_hot_column函数代码示例

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.feature_column.one_hot_column函数的典型用法代码示例。如果您正苦于以下问题:Python one_hot_column函数的具体用法?Python one_hot_column怎么用?Python one_hot_column使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了one_hot_column函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testOneHotColumn

  def testOneHotColumn(self):
    a = fc.sparse_column_with_keys("a", ["a", "b", "c", "d"])
    onehot_a = fc.one_hot_column(a)
    self.assertEqual(onehot_a.sparse_id_column.name, "a")
    self.assertEqual(onehot_a.length, 4)

    b = fc.sparse_column_with_hash_bucket(
        "b", hash_bucket_size=100, combiner="sum")
    onehot_b = fc.one_hot_column(b)
    self.assertEqual(onehot_b.sparse_id_column.name, "b")
    self.assertEqual(onehot_b.length, 100)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:11,代码来源:feature_column_test.py

示例2: testOneHotColumnDeepCopy

 def testOneHotColumnDeepCopy(self):
   a = fc.sparse_column_with_keys("a", ["a", "b", "c", "d"])
   column = fc.one_hot_column(a)
   column_copy = copy.deepcopy(column)
   self.assertEqual(column_copy.sparse_id_column.name, "a")
   self.assertEqual(column.name, "a_one_hot")
   self.assertEqual(column.length, 4)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:7,代码来源:feature_column_test.py

示例3: testMissingValueInOneHotColumnForSparseColumnWithKeys

 def testMissingValueInOneHotColumnForSparseColumnWithKeys(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   one_hot = fc.one_hot_column(ids)
   features = {"ids": constant_op.constant([["marlo", "unknown", "omar"]])}
   one_hot_tensor = feature_column_ops.input_from_feature_columns(
       features, [one_hot])
   with self.test_session() as sess:
     sess.run(variables.global_variables_initializer())
     sess.run(lookup_ops.tables_initializer())
     self.assertAllEqual([[1., 1., 0.]], one_hot_tensor.eval())
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:10,代码来源:feature_column_test.py

示例4: testMissingValueInOneHotColumnForWeightedSparseColumn

 def testMissingValueInOneHotColumnForWeightedSparseColumn(self):
   # Github issue 12583
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   weighted_ids = fc.weighted_sparse_column(ids, "weights")
   one_hot = fc.one_hot_column(weighted_ids)
   features = {
       'ids': constant_op.constant([['marlo', 'unknown', 'omar']]),
       'weights': constant_op.constant([[2., 4., 6.]])
   }
   one_hot_tensor = feature_column_ops.input_from_feature_columns(
     features, [one_hot])
   with self.test_session() as sess:
     sess.run(variables.global_variables_initializer())
     sess.run(lookup_ops.tables_initializer())
     self.assertAllEqual([[2., 6., 0.]], one_hot_tensor.eval())
开发者ID:1000sprites,项目名称:tensorflow,代码行数:15,代码来源:feature_column_test.py

示例5: setUp

  def setUp(self):
    super(DynamicRnnEstimatorTest, self).setUp()
    self.rnn_cell = core_rnn_cell_impl.BasicRNNCell(self.NUM_RNN_CELL_UNITS)
    self.mock_target_column = MockTargetColumn(
        num_label_columns=self.NUM_LABEL_COLUMNS)

    location = feature_column.sparse_column_with_keys(
        'location', keys=['west_side', 'east_side', 'nyc'])
    location_onehot = feature_column.one_hot_column(location)
    self.context_feature_columns = [location_onehot]

    wire_cast = feature_column.sparse_column_with_keys(
        'wire_cast', ['marlo', 'omar', 'stringer'])
    wire_cast_embedded = feature_column.embedding_column(wire_cast, dimension=8)
    measurements = feature_column.real_valued_column(
        'measurements', dimension=2)
    self.sequence_feature_columns = [measurements, wire_cast_embedded]
开发者ID:AliMiraftab,项目名称:tensorflow,代码行数:17,代码来源:dynamic_rnn_estimator_test.py

示例6: testOneHotReshaping

  def testOneHotReshaping(self):
    """Tests reshaping behavior of `OneHotColumn`."""
    id_tensor_shape = [3, 2, 4, 5]

    sparse_column = fc.sparse_column_with_keys(
        "animals", ["squirrel", "moose", "dragon", "octopus"])
    one_hot = fc.one_hot_column(sparse_column)

    vocab_size = len(sparse_column.lookup_config.keys)
    id_tensor = _sparse_id_tensor(id_tensor_shape, vocab_size)

    for output_rank in range(1, len(id_tensor_shape) + 1):
      with variable_scope.variable_scope("output_rank_{}".format(output_rank)):
        one_hot_output = one_hot._to_dnn_input_layer(
            id_tensor, output_rank=output_rank)
      with self.test_session() as sess:
        one_hot_value = sess.run(one_hot_output)
        expected_shape = (id_tensor_shape[:output_rank - 1] + [vocab_size])
        self.assertEquals(expected_shape, list(one_hot_value.shape))
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:19,代码来源:feature_column_test.py

示例7: testRaisesNonEmbeddingColumn

  def testRaisesNonEmbeddingColumn(self):
    one_hot_language = feature_column.one_hot_column(
        feature_column.sparse_column_with_hash_bucket('language', 10))

    params = {
        'feature_columns': [one_hot_language],
        'head': head_lib._multi_class_head(2),
        'hidden_units': [1],
        # Set lr mult to 0. to keep embeddings constant.
        'embedding_lr_multipliers': {
            one_hot_language: 0.0
        },
    }
    features = {
        'language':
            sparse_tensor.SparseTensor(
                values=['en', 'fr', 'zh'],
                indices=[[0, 0], [1, 0], [2, 0]],
                dense_shape=[3, 1]),
    }
    labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32)
    with self.assertRaisesRegexp(ValueError,
                                 'can only be defined for embedding columns'):
      dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params)
开发者ID:willdzeng,项目名称:tensorflow,代码行数:24,代码来源:dnn_test.py

示例8: testOneHotColumnForWeightedSparseColumn

 def testOneHotColumnForWeightedSparseColumn(self):
   ids = fc.sparse_column_with_keys("ids", ["marlo", "omar", "stringer"])
   weighted_ids = fc.weighted_sparse_column(ids, "weights")
   one_hot = fc.one_hot_column(weighted_ids)
   self.assertEqual(one_hot.sparse_id_column.name, "ids_weighted_by_weights")
   self.assertEqual(one_hot.length, 3)
开发者ID:Jackhuang945,项目名称:tensorflow,代码行数:6,代码来源:feature_column_test.py

示例9: testCreateFeatureSpec

  def testCreateFeatureSpec(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    str_sparse_id_col = fc.sparse_column_with_keys(
        "str_id_column", ["marlo", "omar", "stringer"])
    int32_sparse_id_col = fc.sparse_column_with_keys(
        "int32_id_column", [42, 1, -1000], dtype=dtypes.int32)
    int64_sparse_id_col = fc.sparse_column_with_keys(
        "int64_id_column", [42, 1, -1000], dtype=dtypes.int64)
    weighted_id_col = fc.weighted_sparse_column(str_sparse_id_col,
                                                "str_id_weights_column")
    real_valued_col1 = fc.real_valued_column("real_valued_column1")
    real_valued_col2 = fc.real_valued_column("real_valued_column2", 5)
    real_valued_col3 = fc._real_valued_var_len_column(
        "real_valued_column3", is_sparse=True)
    real_valued_col4 = fc._real_valued_var_len_column(
        "real_valued_column4", dtype=dtypes.int64, default_value=0,
        is_sparse=False)
    bucketized_col1 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
    bucketized_col2 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization2", 4),
        [0, 4])
    a = fc.sparse_column_with_hash_bucket("cross_aaa", hash_bucket_size=100)
    b = fc.sparse_column_with_hash_bucket("cross_bbb", hash_bucket_size=100)
    cross_col = fc.crossed_column(set([a, b]), hash_bucket_size=10000)
    one_hot_col = fc.one_hot_column(fc.sparse_column_with_hash_bucket(
        "sparse_column_for_one_hot", hash_bucket_size=100))
    scattered_embedding_col = fc.scattered_embedding_column(
        "scattered_embedding_column", size=100, dimension=10, hash_key=1)
    feature_columns = set([
        sparse_col, embedding_col, weighted_id_col, int32_sparse_id_col,
        int64_sparse_id_col, real_valued_col1, real_valued_col2,
        real_valued_col3, real_valued_col4, bucketized_col1, bucketized_col2,
        cross_col, one_hot_col, scattered_embedding_col
    ])
    expected_config = {
        "sparse_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_embedding":
            parsing_ops.VarLenFeature(dtypes.string),
        "str_id_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "int32_id_column":
            parsing_ops.VarLenFeature(dtypes.int32),
        "int64_id_column":
            parsing_ops.VarLenFeature(dtypes.int64),
        "str_id_weights_column":
            parsing_ops.VarLenFeature(dtypes.float32),
        "real_valued_column1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column2":
            parsing_ops.FixedLenFeature(
                [5], dtype=dtypes.float32),
        "real_valued_column3":
            parsing_ops.VarLenFeature(dtype=dtypes.float32),
        "real_valued_column4":
            parsing_ops.FixedLenSequenceFeature(
                [], dtype=dtypes.int64, allow_missing=True, default_value=0),
        "real_valued_column_for_bucketization1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column_for_bucketization2":
            parsing_ops.FixedLenFeature(
                [4], dtype=dtypes.float32),
        "cross_aaa":
            parsing_ops.VarLenFeature(dtypes.string),
        "cross_bbb":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_one_hot":
            parsing_ops.VarLenFeature(dtypes.string),
        "scattered_embedding_column":
            parsing_ops.VarLenFeature(dtypes.string),
    }

    config = fc.create_feature_spec_for_parsing(feature_columns)
    self.assertDictEqual(expected_config, config)

    # Test that the same config is parsed out if we pass a dictionary.
    feature_columns_dict = {
        str(i): val
        for i, val in enumerate(feature_columns)
    }
    config = fc.create_feature_spec_for_parsing(feature_columns_dict)
    self.assertDictEqual(expected_config, config)
开发者ID:AlbertXiebnu,项目名称:tensorflow,代码行数:90,代码来源:feature_column_test.py

示例10: testCreateFeatureSpec

  def testCreateFeatureSpec(self):
    sparse_col = fc.sparse_column_with_hash_bucket(
        "sparse_column", hash_bucket_size=100)
    embedding_col = fc.embedding_column(
        fc.sparse_column_with_hash_bucket(
            "sparse_column_for_embedding", hash_bucket_size=10),
        dimension=4)
    str_sparse_id_col = fc.sparse_column_with_keys(
        "str_id_column", ["marlo", "omar", "stringer"])
    int32_sparse_id_col = fc.sparse_column_with_keys(
        "int32_id_column", [42, 1, -1000], dtype=dtypes.int32)
    int64_sparse_id_col = fc.sparse_column_with_keys(
        "int64_id_column", [42, 1, -1000], dtype=dtypes.int64)
    weighted_id_col = fc.weighted_sparse_column(str_sparse_id_col,
                                                "str_id_weights_column")
    real_valued_col1 = fc.real_valued_column("real_valued_column1")
    real_valued_col2 = fc.real_valued_column("real_valued_column2", 5)
    bucketized_col1 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4])
    bucketized_col2 = fc.bucketized_column(
        fc.real_valued_column("real_valued_column_for_bucketization2", 4),
        [0, 4])
    a = fc.sparse_column_with_hash_bucket("cross_aaa", hash_bucket_size=100)
    b = fc.sparse_column_with_hash_bucket("cross_bbb", hash_bucket_size=100)
    cross_col = fc.crossed_column(set([a, b]), hash_bucket_size=10000)
    one_hot_col = fc.one_hot_column(fc.sparse_column_with_hash_bucket(
        "sparse_column_for_one_hot", hash_bucket_size=100))
    scattered_embedding_col = fc.scattered_embedding_column(
        "scattered_embedding_column", size=100, dimension=10, hash_key=1)
    feature_columns = set([
        sparse_col, embedding_col, weighted_id_col, int32_sparse_id_col,
        int64_sparse_id_col, real_valued_col1, real_valued_col2,
        bucketized_col1, bucketized_col2, cross_col, one_hot_col,
        scattered_embedding_col
    ])
    expected_config = {
        "sparse_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_embedding":
            parsing_ops.VarLenFeature(dtypes.string),
        "str_id_column":
            parsing_ops.VarLenFeature(dtypes.string),
        "int32_id_column":
            parsing_ops.VarLenFeature(dtypes.int32),
        "int64_id_column":
            parsing_ops.VarLenFeature(dtypes.int64),
        "str_id_weights_column":
            parsing_ops.VarLenFeature(dtypes.float32),
        "real_valued_column1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column2":
            parsing_ops.FixedLenFeature(
                [5], dtype=dtypes.float32),
        "real_valued_column_for_bucketization1":
            parsing_ops.FixedLenFeature(
                [1], dtype=dtypes.float32),
        "real_valued_column_for_bucketization2":
            parsing_ops.FixedLenFeature(
                [4], dtype=dtypes.float32),
        "cross_aaa":
            parsing_ops.VarLenFeature(dtypes.string),
        "cross_bbb":
            parsing_ops.VarLenFeature(dtypes.string),
        "sparse_column_for_one_hot":
            parsing_ops.VarLenFeature(dtypes.string),
        "scattered_embedding_column":
            parsing_ops.VarLenFeature(dtypes.string),
    }

    config = fc.create_feature_spec_for_parsing(feature_columns)
    self.assertDictEqual(expected_config, config)

    # Tests that contrib feature columns work with core library:
    config_core = fc_core.make_parse_example_spec(feature_columns)
    self.assertDictEqual(expected_config, config_core)

    # Test that the same config is parsed out if we pass a dictionary.
    feature_columns_dict = {
        str(i): val
        for i, val in enumerate(feature_columns)
    }
    config = fc.create_feature_spec_for_parsing(feature_columns_dict)
    self.assertDictEqual(expected_config, config)
开发者ID:Dr4KK,项目名称:tensorflow,代码行数:84,代码来源:feature_column_test.py


注:本文中的tensorflow.contrib.layers.python.layers.feature_column.one_hot_column函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。