当前位置: 首页>>代码示例>>Python>>正文


Python utils.column_to_tensors函数代码示例

本文整理汇总了Python中tensorflow.contrib.kfac.python.ops.utils.column_to_tensors函数的典型用法代码示例。如果您正苦于以下问题:Python column_to_tensors函数的具体用法?Python column_to_tensors怎么用?Python column_to_tensors使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了column_to_tensors函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testColumnToTensors

  def testColumnToTensors(self):
    with ops.Graph().as_default(), self.test_session() as sess:
      random_seed.set_random_seed(200)

      vector_template = array_ops.constant(np.array([[0., 1.], [2., 3.]]))
      colvec = array_ops.constant(np.arange(4.)[:, None])
      output = sess.run(utils.column_to_tensors(vector_template, colvec))
      self.assertAllClose(output, np.array([[0., 1.], [2., 3.]]))

      vector_template = self._fully_connected_layer_params()
      colvec = array_ops.constant(np.arange(6.)[:, None])
      output = sess.run(utils.column_to_tensors(vector_template, colvec))

      self.assertIsInstance(output, tuple)
      self.assertEqual(len(output), 2)
      a, b = output
      self.assertAllClose(a, np.array([[0., 1.], [2., 3.]]))
      self.assertAllClose(b, np.array([4., 5.]))

      vector_template = list(vector_template)
      vector_template.append(array_ops.constant([[6.], [7.], [8.], [9.]]))
      colvec = array_ops.constant(np.arange(10.)[:, None])
      output = sess.run(utils.column_to_tensors(vector_template, colvec))
      self.assertIsInstance(output, tuple)
      self.assertEqual(len(output), 3)
      a, b, c = output
      self.assertAllClose(a, np.array([[0., 1.], [2., 3.]]))
      self.assertAllClose(b, np.array([4., 5.]))
      self.assertAllClose(c, np.array([[6.], [7.], [8.], [9.]]))
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:29,代码来源:utils_test.py

示例2: testMultiplyInverseAgainstExplicit

  def testMultiplyInverseAgainstExplicit(self):
    with ops.Graph().as_default(), self.test_session() as sess:
      random_seed.set_random_seed(200)
      params = array_ops.zeros((2, 2, 2, 2))
      inputs = array_ops.zeros((2, 2, 2, 2))
      outputs = array_ops.zeros((2, 2, 2, 2))
      block = fb.ConvKFCBasicFB(lc.LayerCollection(), params, (1, 1, 1, 1),
                                'SAME')
      block.register_additional_minibatch(inputs, outputs)
      grads = outputs**2
      damping = 0.  # This test is only valid without damping.
      block.instantiate_factors(([grads],), damping)

      sess.run(state_ops.assign(block._input_factor._cov, _make_psd(8)))
      sess.run(state_ops.assign(block._output_factor._cov, _make_psd(2)))
      sess.run(block._input_factor.make_inverse_update_ops())
      sess.run(block._output_factor.make_inverse_update_ops())

      v_flat = np.arange(16, dtype=np.float32)
      vector = utils.column_to_tensors(params, array_ops.constant(v_flat))
      output = block.multiply_inverse(vector)
      output_flat = sess.run(utils.tensors_to_column(output)).ravel()

      full = sess.run(block.full_fisher_block())
      explicit = np.dot(np.linalg.inv(full + damping * np.eye(16)), v_flat)

      self.assertAllClose(output_flat, explicit)
开发者ID:ChengYuXiang,项目名称:tensorflow,代码行数:27,代码来源:fisher_blocks_test.py

示例3: testMultiplyInverseAgainstExplicit

  def testMultiplyInverseAgainstExplicit(self):
    with ops.Graph().as_default(), self.test_session() as sess:
      random_seed.set_random_seed(200)
      input_dim, output_dim = 3, 2
      inputs = array_ops.zeros([32, input_dim])
      outputs = array_ops.zeros([32, output_dim])
      params = array_ops.zeros([input_dim, output_dim])
      block = fb.FullyConnectedKFACBasicFB(
          lc.LayerCollection(), inputs, outputs, has_bias=False)
      grads = outputs**2
      damping = 0.  # This test is only valid without damping.
      block.instantiate_factors((grads,), damping)

      sess.run(state_ops.assign(block._input_factor._cov, _make_psd(3)))
      sess.run(state_ops.assign(block._output_factor._cov, _make_psd(2)))
      sess.run(block._input_factor.make_inverse_update_ops())
      sess.run(block._output_factor.make_inverse_update_ops())

      v_flat = np.arange(6, dtype=np.float32)
      vector = utils.column_to_tensors(params, array_ops.constant(v_flat))
      output = block.multiply_inverse(vector)
      output_flat = sess.run(utils.tensors_to_column(output)).ravel()

      full = sess.run(block.full_fisher_block())
      explicit = np.dot(np.linalg.inv(full + damping * np.eye(6)), v_flat)

      self.assertAllClose(output_flat, explicit)
开发者ID:DjangoPeng,项目名称:tensorflow,代码行数:27,代码来源:fisher_blocks_test.py

示例4: testMultiplyInverseAgainstExplicit

  def testMultiplyInverseAgainstExplicit(self):
    with ops.Graph().as_default(), self.test_session() as sess:
      random_seed.set_random_seed(200)
      params = (array_ops.constant([1., 2.]), array_ops.constant(3.))
      block = fb.FullFB(lc.LayerCollection(), params)
      block.register_additional_minibatch(32)
      grads = (array_ops.constant([2., 3.]), array_ops.constant(4.))
      damping = 0.5
      block.instantiate_factors((grads,), damping)
      block._factor.instantiate_cov_variables()
      block.register_inverse()
      block._factor.instantiate_inv_variables()

      # Make sure our inverse is something other than the identity.
      sess.run(state_ops.assign(block._factor._cov, _make_psd(3)))
      sess.run(block._factor.make_inverse_update_ops())

      v_flat = np.array([4., 5., 6.], dtype=np.float32)
      vector = utils.column_to_tensors(params, array_ops.constant(v_flat))
      output = block.multiply_inverse(vector)
      output_flat = sess.run(utils.tensors_to_column(output)).ravel()

      full = sess.run(block.full_fisher_block())
      explicit = np.dot(np.linalg.inv(full + damping * np.eye(3)), v_flat)

      self.assertAllClose(output_flat, explicit)
开发者ID:DILASSS,项目名称:tensorflow,代码行数:26,代码来源:fisher_blocks_test.py

示例5: multiply_inverse

 def multiply_inverse(self, vector):
   vector_flat = utils.tensors_to_column(vector)
   print("vector_flat: %s" % vector_flat)
   out_flat = self._factor.left_multiply_inverse(
       vector_flat, self._damping)
   print("out_flat: %s" % out_flat)
   return utils.column_to_tensors(vector, out_flat)
开发者ID:QiangCai,项目名称:tensorflow,代码行数:7,代码来源:fisher_blocks.py

示例6: multiply_matpower

 def multiply_matpower(self, vector, exp):
   vector_flat = utils.tensors_to_column(vector)
   out_flat = self._factor.left_multiply_matpower(
       vector_flat, exp, self._damping_func)
   return utils.column_to_tensors(vector, out_flat)
开发者ID:PuchatekwSzortach,项目名称:tensorflow,代码行数:5,代码来源:fisher_blocks.py

示例7: multiply

 def multiply(self, vector):
   vector_flat = utils.tensors_to_column(vector)
   out_flat = vector_flat * (self._factor.get_cov() + self._damping)
   return utils.column_to_tensors(vector, out_flat)
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:4,代码来源:fisher_blocks.py

示例8: multiply_inverse

 def multiply_inverse(self, vector):
   inverse = self._factor.get_inverse(self._damping)
   out_flat = math_ops.matmul(inverse, utils.tensors_to_column(vector))
   return utils.column_to_tensors(vector, out_flat)
开发者ID:Crazyonxh,项目名称:tensorflow,代码行数:4,代码来源:fisher_blocks.py

示例9: multiply

 def multiply(self, vector):
   vector_flat = utils.tensors_to_column(vector)
   out_flat = self._factor.left_multiply(
       vector_flat, self._damping)
   return utils.column_to_tensors(vector, out_flat)
开发者ID:QiangCai,项目名称:tensorflow,代码行数:5,代码来源:fisher_blocks.py


注:本文中的tensorflow.contrib.kfac.python.ops.utils.column_to_tensors函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。