本文整理汇总了Python中tensorflow.contrib.keras.python.keras.testing_utils.layer_test函数的典型用法代码示例。如果您正苦于以下问题:Python layer_test函数的具体用法?Python layer_test怎么用?Python layer_test使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了layer_test函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_convolution_2d
def test_convolution_2d(self):
num_samples = 2
filters = 2
stack_size = 3
kernel_size = (3, 2)
num_row = 7
num_col = 6
for padding in ['valid', 'same']:
for strides in [(1, 1), (2, 2)]:
if padding == 'same' and strides != (1, 1):
continue
with self.test_session(use_gpu=True):
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
if test.is_gpu_available(cuda_only=True):
testing_utils.layer_test(
keras.layers.Conv2D,
kwargs={
'filters': filters,
'kernel_size': kernel_size,
'padding': padding,
'strides': strides,
'data_format': 'channels_first'
},
input_shape=(num_samples, stack_size, num_row, num_col))
示例2: test_convolution_3d
def test_convolution_3d(self):
num_samples = 2
filters = 2
stack_size = 3
input_len_dim1 = 9
input_len_dim2 = 8
input_len_dim3 = 8
for padding in ['valid', 'same']:
for strides in [(1, 1, 1), (2, 2, 2)]:
if padding == 'same' and strides != (1, 1, 1):
continue
with self.test_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.Convolution3D,
kwargs={
'filters': filters,
'kernel_size': 3,
'padding': padding,
'strides': strides
},
input_shape=(num_samples, input_len_dim1, input_len_dim2,
input_len_dim3, stack_size))
示例3: test_zero_padding_3d
def test_zero_padding_3d(self):
num_samples = 2
stack_size = 2
input_len_dim1 = 4
input_len_dim2 = 5
input_len_dim3 = 3
inputs = np.ones((num_samples, input_len_dim1, input_len_dim2,
input_len_dim3, stack_size))
# basic test
with self.test_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.ZeroPadding3D,
kwargs={'padding': (2, 2, 2)},
input_shape=inputs.shape)
# correctness test
with self.test_session(use_gpu=True):
layer = keras.layers.ZeroPadding3D(padding=(2, 2, 2))
layer.build(inputs.shape)
output = layer(keras.backend.variable(inputs))
np_output = keras.backend.eval(output)
for offset in [0, 1, -1, -2]:
np.testing.assert_allclose(np_output[:, offset, :, :, :], 0.)
np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.)
np.testing.assert_allclose(np_output[:, :, :, offset, :], 0.)
np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, 2:-2, :], 1.)
示例4: test_conv_lstm
def test_conv_lstm(self):
num_row = 3
num_col = 3
filters = 2
num_samples = 1
input_channel = 2
input_num_row = 5
input_num_col = 5
sequence_len = 2
for data_format in ['channels_first', 'channels_last']:
if data_format == 'channels_first':
inputs = np.random.rand(num_samples, sequence_len,
input_channel,
input_num_row, input_num_col)
else:
inputs = np.random.rand(num_samples, sequence_len,
input_num_row, input_num_col,
input_channel)
for return_sequences in [True, False]:
# test for output shape:
with self.test_session():
testing_utils.layer_test(
keras.layers.ConvLSTM2D,
kwargs={'data_format': data_format,
'return_sequences': return_sequences,
'filters': filters,
'kernel_size': (num_row, num_col),
'padding': 'valid'},
input_shape=inputs.shape)
示例5: test_averagepooling_1d
def test_averagepooling_1d(self):
with self.test_session(use_gpu=True):
for padding in ['valid', 'same']:
for stride in [1, 2]:
testing_utils.layer_test(
keras.layers.AveragePooling1D,
kwargs={'strides': stride,
'padding': padding},
input_shape=(3, 5, 4))
示例6: test_cropping_2d
def test_cropping_2d(self):
num_samples = 2
stack_size = 2
input_len_dim1 = 9
input_len_dim2 = 9
cropping = ((2, 2), (3, 3))
for data_format in ['channels_first', 'channels_last']:
if data_format == 'channels_first':
inputs = np.random.rand(num_samples, stack_size, input_len_dim1,
input_len_dim2)
else:
inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2,
stack_size)
# basic test
with self.test_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.Cropping2D,
kwargs={'cropping': cropping,
'data_format': data_format},
input_shape=inputs.shape)
# correctness test
with self.test_session(use_gpu=True):
layer = keras.layers.Cropping2D(
cropping=cropping, data_format=data_format)
layer.build(inputs.shape)
output = layer(keras.backend.variable(inputs))
np_output = keras.backend.eval(output)
# compare with numpy
if data_format == 'channels_first':
expected_out = inputs[:, :, cropping[0][0]:-cropping[0][1], cropping[
1][0]:-cropping[1][1]]
else:
expected_out = inputs[:, cropping[0][0]:-cropping[0][1], cropping[1][
0]:-cropping[1][1], :]
np.testing.assert_allclose(np_output, expected_out)
for data_format in ['channels_first', 'channels_last']:
if data_format == 'channels_first':
inputs = np.random.rand(num_samples, stack_size, input_len_dim1,
input_len_dim2)
else:
inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2,
stack_size)
# another correctness test (no cropping)
with self.test_session(use_gpu=True):
cropping = ((0, 0), (0, 0))
layer = keras.layers.Cropping2D(
cropping=cropping, data_format=data_format)
layer.build(inputs.shape)
output = layer(keras.backend.variable(inputs))
np_output = keras.backend.eval(output)
# compare with input
np.testing.assert_allclose(np_output, inputs)
示例7: test_cropping_1d
def test_cropping_1d(self):
num_samples = 2
time_length = 4
input_len_dim1 = 2
inputs = np.random.rand(num_samples, time_length, input_len_dim1)
with self.test_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.Cropping1D,
kwargs={'cropping': (2, 2)},
input_shape=inputs.shape)
示例8: test_return_sequences_SimpleRNN
def test_return_sequences_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
with self.test_session():
testing_utils.layer_test(
keras.layers.SimpleRNN,
kwargs={'units': units,
'return_sequences': True},
input_shape=(num_samples, timesteps, embedding_dim))
示例9: test_implementation_mode_SimpleRNN
def test_implementation_mode_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
with self.test_session():
for mode in [0, 1, 2]:
testing_utils.layer_test(
keras.layers.SimpleRNN,
kwargs={'units': units,
'implementation': mode},
input_shape=(num_samples, timesteps, embedding_dim))
示例10: test_dropout_SimpleRNN
def test_dropout_SimpleRNN(self):
num_samples = 2
timesteps = 3
embedding_dim = 4
units = 2
with self.test_session():
testing_utils.layer_test(
keras.layers.SimpleRNN,
kwargs={'units': units,
'dropout': 0.1,
'recurrent_dropout': 0.1},
input_shape=(num_samples, timesteps, embedding_dim))
示例11: test_maxpooling_2d
def test_maxpooling_2d(self):
pool_size = (3, 3)
with self.test_session(use_gpu=True):
for strides in [(1, 1), (2, 2)]:
testing_utils.layer_test(
keras.layers.MaxPooling2D,
kwargs={
'strides': strides,
'padding': 'valid',
'pool_size': pool_size
},
input_shape=(3, 5, 6, 4))
示例12: test_upsampling_3d
def test_upsampling_3d(self):
num_samples = 2
stack_size = 2
input_len_dim1 = 10
input_len_dim2 = 11
input_len_dim3 = 12
for data_format in ['channels_first', 'channels_last']:
if data_format == 'channels_first':
inputs = np.random.rand(num_samples, stack_size, input_len_dim1,
input_len_dim2, input_len_dim3)
else:
inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2,
input_len_dim3, stack_size)
# basic test
with self.test_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.UpSampling3D,
kwargs={'size': (2, 2, 2),
'data_format': data_format},
input_shape=inputs.shape)
for length_dim1 in [2, 3]:
for length_dim2 in [2]:
for length_dim3 in [3]:
layer = keras.layers.UpSampling3D(
size=(length_dim1, length_dim2, length_dim3),
data_format=data_format)
layer.build(inputs.shape)
output = layer(keras.backend.variable(inputs))
np_output = keras.backend.eval(output)
if data_format == 'channels_first':
assert np_output.shape[2] == length_dim1 * input_len_dim1
assert np_output.shape[3] == length_dim2 * input_len_dim2
assert np_output.shape[4] == length_dim3 * input_len_dim3
else: # tf
assert np_output.shape[1] == length_dim1 * input_len_dim1
assert np_output.shape[2] == length_dim2 * input_len_dim2
assert np_output.shape[3] == length_dim3 * input_len_dim3
# compare with numpy
if data_format == 'channels_first':
expected_out = np.repeat(inputs, length_dim1, axis=2)
expected_out = np.repeat(expected_out, length_dim2, axis=3)
expected_out = np.repeat(expected_out, length_dim3, axis=4)
else: # tf
expected_out = np.repeat(inputs, length_dim1, axis=1)
expected_out = np.repeat(expected_out, length_dim2, axis=2)
expected_out = np.repeat(expected_out, length_dim3, axis=3)
np.testing.assert_allclose(np_output, expected_out)
示例13: test_conv_lstm_dropout
def test_conv_lstm_dropout(self):
# check dropout
with self.test_session():
testing_utils.layer_test(
keras.layers.ConvLSTM2D,
kwargs={'data_format': 'channels_last',
'return_sequences': False,
'filters': 2,
'kernel_size': (3, 3),
'padding': 'same',
'dropout': 0.1,
'recurrent_dropout': 0.1},
input_shape=(1, 2, 5, 5, 2))
示例14: test_dense
def test_dense(self):
with self.test_session():
testing_utils.layer_test(
keras.layers.Dense, kwargs={'units': 3}, input_shape=(3, 2))
with self.test_session():
testing_utils.layer_test(
keras.layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 2))
with self.test_session():
testing_utils.layer_test(
keras.layers.Dense, kwargs={'units': 3}, input_shape=(None, None, 2))
with self.test_session():
testing_utils.layer_test(
keras.layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 5, 2))
# Test regularization
with self.test_session():
layer = keras.layers.Dense(
3,
kernel_regularizer=keras.regularizers.l1(0.01),
bias_regularizer='l1',
activity_regularizer='l2',
name='dense_reg')
layer(keras.backend.variable(np.ones((2, 4))))
self.assertEqual(3, len(layer.losses))
# Test constraints
with self.test_session():
layer = keras.layers.Dense(
3, kernel_constraint='max_norm', bias_constraint='max_norm')
layer(keras.backend.variable(np.ones((2, 4))))
self.assertEqual(2, len(layer.constraints))
示例15: test_dilated_conv1d
def test_dilated_conv1d(self):
with self.test_session(use_gpu=True):
testing_utils.layer_test(
keras.layers.Conv1D,
input_data=np.reshape(np.arange(4, dtype='float32'), (1, 4, 1)),
kwargs={
'filters': 1,
'kernel_size': 2,
'dilation_rate': 1,
'padding': 'valid',
'kernel_initializer': 'ones',
'use_bias': False,
},
expected_output=[[[1], [3], [5]]])