本文整理汇总了Python中tensorflow.contrib.framework.python.ops.variables.local_variable函数的典型用法代码示例。如果您正苦于以下问题:Python local_variable函数的具体用法?Python local_variable怎么用?Python local_variable使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了local_variable函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testGetLocalVariablesReturnsTransients
def testGetLocalVariablesReturnsTransients(self):
with self.test_session():
with variable_scope.variable_scope('A'):
a = variables_lib2.local_variable(0)
with variable_scope.variable_scope('B'):
b = variables_lib2.local_variable(0)
self.assertEquals([a], variables_lib2.get_local_variables('A'))
self.assertEquals([b], variables_lib2.get_local_variables('B'))
示例2: testGetVariablesDontReturnsTransients
def testGetVariablesDontReturnsTransients(self):
with self.test_session():
with variable_scope.variable_scope('A'):
variables_lib2.local_variable(0)
with variable_scope.variable_scope('B'):
variables_lib2.local_variable(0)
self.assertEquals([], variables_lib2.get_variables('A'))
self.assertEquals([], variables_lib2.get_variables('B'))
示例3: test_local_variable
def test_local_variable(self):
with self.test_session() as sess:
self.assertEquals([], variables_lib.local_variables())
value0 = 42
variables_lib2.local_variable(value0)
value1 = 43
variables_lib2.local_variable(value1)
variables = variables_lib.local_variables()
self.assertEquals(2, len(variables))
self.assertRaises(errors_impl.OpError, sess.run, variables)
variables_lib.initialize_variables(variables).run()
self.assertAllEqual(set([value0, value1]), set(sess.run(variables)))
示例4: testEvaluateWithEvalFeedDict
def testEvaluateWithEvalFeedDict(self):
# Create a checkpoint.
checkpoint_dir = os.path.join(self.get_temp_dir(),
'evaluate_with_eval_feed_dict')
self._train_model(checkpoint_dir, num_steps=1)
# We need a variable that that the saver will try to restore.
variables.get_or_create_global_step()
# Create a variable and an eval op that increments it with a placeholder.
my_var = variables.local_variable(0.0, name='my_var')
increment = array_ops.placeholder(dtype=dtypes.float32)
eval_ops = state_ops.assign_add(my_var, increment)
increment_value = 3
num_evals = 5
expected_value = increment_value * num_evals
final_values = evaluation.evaluate_repeatedly(
checkpoint_dir=checkpoint_dir,
eval_ops=eval_ops,
feed_dict={increment: 3},
final_ops={'my_var': array_ops.identity(my_var)},
hooks=[evaluation.StopAfterNEvalsHook(num_evals),],
max_number_of_evaluations=1)
self.assertEqual(final_values['my_var'], expected_value)
示例5: testEvalOpAndFinalOp
def testEvalOpAndFinalOp(self):
checkpoint_dir = os.path.join(self.get_temp_dir(), 'eval_ops_and_final_ops')
# Train a model for a single step to get a checkpoint.
self._train_model(checkpoint_dir, num_steps=1)
checkpoint_path = evaluation.wait_for_new_checkpoint(checkpoint_dir)
# Create the model so we have something to restore.
inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
logistic_classifier(inputs)
num_evals = 5
final_increment = 9.0
my_var = variables.local_variable(0.0, name='MyVar')
eval_ops = state_ops.assign_add(my_var, 1.0)
final_ops = array_ops.identity(my_var) + final_increment
final_ops_values = evaluation.evaluate_once(
checkpoint_path=checkpoint_path,
eval_ops=eval_ops,
final_ops={'value': final_ops},
hooks=[
evaluation.StopAfterNEvalsHook(num_evals),
])
self.assertEqual(final_ops_values['value'], num_evals + final_increment)
示例6: testLocalVariableNameAndShape
def testLocalVariableNameAndShape(self):
with self.test_session():
with variable_scope.variable_scope('A'):
a = variables_lib2.local_variable([1, 1, 1, 1, 1], name='a')
self.assertEquals(a.op.name, 'A/a')
self.assertListEqual(a.get_shape().as_list(), [5])
self.assertListEqual([a], variables_lib2.get_local_variables())
示例7: testOnlyFinalOp
def testOnlyFinalOp(self):
checkpoint_dir = os.path.join(self.get_temp_dir(), 'only_final_ops')
# Train a model for a single step to get a checkpoint.
self._train_model(checkpoint_dir, num_steps=1)
checkpoint_path = evaluation.wait_for_new_checkpoint(checkpoint_dir)
# Create the model so we have something to restore.
inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
logistic_classifier(inputs)
final_increment = 9.0
my_var = variables.local_variable(0.0, name='MyVar')
final_ops = array_ops.identity(my_var) + final_increment
final_ops_values = evaluation.evaluate_once(
checkpoint_path=checkpoint_path, final_ops={'value': final_ops})
self.assertEqual(final_ops_values['value'], final_increment)
示例8: get_or_create_eval_step
def get_or_create_eval_step():
"""Gets or creates the eval step `Tensor`.
Returns:
A `Tensor` representing a counter for the evaluation step.
Raises:
ValueError: If multiple `Tensors` have been added to the
`tf.GraphKeys.EVAL_STEP` collection.
"""
graph = ops.get_default_graph()
eval_steps = graph.get_collection(ops.GraphKeys.EVAL_STEP)
if len(eval_steps) == 1:
return eval_steps[0]
elif len(eval_steps) > 1:
raise ValueError('Multiple tensors added to tf.GraphKeys.EVAL_STEP')
else:
counter = variables.local_variable(0.0, name='eval_step')
graph.add_to_collection(ops.GraphKeys.EVAL_STEP, counter)
return counter
示例9: _build_inference_graph
def _build_inference_graph(self):
"""Build simple inference graph.
This includes a regular variable, local variable, and fake table.
Returns:
Tuple of 3 `Tensor` objects, 2 input and 1 output.
"""
variables_lib.create_global_step()
in0 = variables.Variable(1.0)
in1 = variables_lib.local_variable(2.0)
fake_table = variables.Variable(
3.0,
trainable=False,
collections=['fake_tables'],
name='fake_table_var')
in0.graph.add_to_collections([ops.GraphKeys.TABLE_INITIALIZERS],
fake_table.initializer)
out = in0 + in1 + fake_table
return in0, in1, out
示例10: test_train_loss
def test_train_loss(self):
with ops.Graph().as_default() as g, self.test_session(g):
variables_lib.create_global_step()
loss_var = variables_lib.local_variable(10.0)
train_op = control_flow_ops.group(
state_ops.assign_add(variables_lib.get_global_step(), 1),
state_ops.assign_add(loss_var, -1.0))
self._assert_summaries(self._output_dir)
self._assert_ckpt(self._output_dir, False)
loss = learn.graph_actions.train(
g,
output_dir=self._output_dir,
train_op=train_op,
loss_op=loss_var.value(),
steps=6)
# TODO(ebrevdo,ptucker,ispir): this meta_graph_def lacks the
# SaverDef, so we can't add it to the summary assertion test below.
# meta_graph_def = meta_graph.create_meta_graph_def()
self.assertEqual(4.0, loss)
self._assert_summaries(self._output_dir, expected_graphs=[g])
self._assert_ckpt(self._output_dir, True)
示例11: testTrainWithLocalVariable
def testTrainWithLocalVariable(self):
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
local_multiplier = variables_lib.local_variable(1.0)
tf_predictions = logistic_classifier(tf_inputs) * local_multiplier
losses.log_loss(tf_labels, tf_predictions)
total_loss = losses.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = training.create_train_op(total_loss, optimizer)
loss = training.train(
train_op,
None,
hooks=[basic_session_run_hooks.StopAtStepHook(num_steps=300)],
save_summaries_steps=None,
save_checkpoint_secs=None)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
示例12: testTrainWithLocalVariable
def testTrainWithLocalVariable(self):
logdir = os.path.join(
tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs')
with ops.Graph().as_default():
random_seed.set_random_seed(0)
tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)
local_multiplier = variables_lib2.local_variable(1.0)
tf_predictions = LogisticClassifier(tf_inputs) * local_multiplier
loss_ops.log_loss(tf_predictions, tf_labels)
total_loss = loss_ops.get_total_loss()
optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)
train_op = learning.create_train_op(total_loss, optimizer)
loss = learning.train(
train_op, logdir, number_of_steps=300, log_every_n_steps=10)
self.assertIsNotNone(loss)
self.assertLess(loss, .015)
示例13: testInitializedVariableValue
def testInitializedVariableValue(self):
with self.test_session() as sess:
a = variables_lib2.local_variable([0, 0, 0, 0, 0], name='a')
sess.run(variables_lib.local_variables_initializer())
self.assertAllEqual(a.eval(), [0] * 5)
示例14: testLocalVariableNotInVariablesToRestore
def testLocalVariableNotInVariablesToRestore(self):
with self.test_session():
with variable_scope.variable_scope('A'):
a = variables_lib2.local_variable(0)
self.assertFalse(a in variables_lib2.get_variables_to_restore())
self.assertTrue(a in variables_lib.local_variables())
示例15: testLocalVariableNotInAllVariables
def testLocalVariableNotInAllVariables(self):
with self.test_session():
with variable_scope.variable_scope('A'):
a = variables_lib2.local_variable(0)
self.assertFalse(a in variables_lib.global_variables())
self.assertTrue(a in variables_lib.local_variables())