本文整理汇总了Python中tensorflow.contrib.distributions.python.ops.distribution_util.pick_vector函数的典型用法代码示例。如果您正苦于以下问题:Python pick_vector函数的具体用法?Python pick_vector怎么用?Python pick_vector使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pick_vector函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_batch_of_event_sample_matrices
def make_batch_of_event_sample_matrices(self, x, name="make_batch_of_event_sample_matrices"):
"""Reshapes/transposes `Distribution` `Tensor` from S+B+E to B_+E_+S_.
Where:
- `B_ = B if B else [1]`,
- `E_ = E if E else [1]`,
- `S_ = [tf.reduce_prod(S)]`.
Args:
x: `Tensor`.
name: `String`. The name to give this op.
Returns:
x: `Tensor`. Input transposed/reshaped to `B_+E_+S_`.
sample_shape: `Tensor` (1D, `int32`).
"""
with self._name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
sample_shape, batch_shape, event_shape = self.get_shape(x)
event_shape = distribution_util.pick_vector(self._event_ndims_is_0, (1,), event_shape)
batch_shape = distribution_util.pick_vector(self._batch_ndims_is_0, (1,), batch_shape)
new_shape = array_ops.concat(0, ((-1,), batch_shape, event_shape))
x = array_ops.reshape(x, shape=new_shape)
x = distribution_util.rotate_transpose(x, shift=-1)
return x, sample_shape
示例2: make_batch_of_event_sample_matrices
def make_batch_of_event_sample_matrices(
self, x, expand_batch_dim=True,
name="make_batch_of_event_sample_matrices"):
"""Reshapes/transposes `Distribution` `Tensor` from S+B+E to B_+E_+S_.
Where:
- `B_ = B if B or not expand_batch_dim else [1]`,
- `E_ = E if E else [1]`,
- `S_ = [tf.reduce_prod(S)]`.
Args:
x: `Tensor`.
expand_batch_dim: Python `Boolean` scalar. If `True` the batch dims will
be expanded such that batch_ndims>=1.
name: `String`. The name to give this op.
Returns:
x: `Tensor`. Input transposed/reshaped to `B_+E_+S_`.
sample_shape: `Tensor` (1D, `int32`).
"""
with self._name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
sample_shape, batch_shape, event_shape = self.get_shape(x)
event_shape = distribution_util.pick_vector(
self._event_ndims_is_0, [1], event_shape)
if expand_batch_dim:
batch_shape = distribution_util.pick_vector(
self._batch_ndims_is_0, [1], batch_shape)
new_shape = array_ops.concat_v2([[-1], batch_shape, event_shape], 0)
x = array_ops.reshape(x, shape=new_shape)
x = distribution_util.rotate_transpose(x, shift=-1)
return x, sample_shape
示例3: _sample_n
def _sample_n(self, n, seed=None):
sample_shape = _concat_vectors(
distribution_util.pick_vector(self._needs_rotation, self._empty, [n]),
self._override_batch_shape,
self._override_event_shape,
distribution_util.pick_vector(self._needs_rotation, [n], self._empty))
x = self.distribution.sample(sample_shape=sample_shape, seed=seed)
x = self._maybe_rotate_dims(x)
return self.bijector.forward(x)
示例4: _expand_sample_shape_to_vector
def _expand_sample_shape_to_vector(self, x, name):
"""Helper to `sample` which ensures input is 1D."""
x_static_val = tensor_util.constant_value(x)
if x_static_val is None:
prod = math_ops.reduce_prod(x)
else:
prod = np.prod(x_static_val, dtype=x.dtype.as_numpy_dtype())
ndims = x.get_shape().ndims # != sample_ndims
if ndims is None:
# Maybe expand_dims.
ndims = array_ops.rank(x)
expanded_shape = distribution_util.pick_vector(
math_ops.equal(ndims, 0),
np.array([1], dtype=np.int32),
array_ops.shape(x))
x = array_ops.reshape(x, expanded_shape)
elif ndims == 0:
# Definitely expand_dims.
if x_static_val is not None:
x = ops.convert_to_tensor(
np.array([x_static_val], dtype=x.dtype.as_numpy_dtype()),
name=name)
else:
x = array_ops.reshape(x, [1])
elif ndims != 1:
raise ValueError("Input is neither scalar nor vector.")
return x, prod
示例5: _sample_n
def _sample_n(self, n, seed=None):
# Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
# ids as a [n]-shaped vector.
batch_size = (np.prod(self.batch_shape.as_list(), dtype=np.int32)
if self.batch_shape.is_fully_defined()
else math_ops.reduce_prod(self.batch_shape_tensor()))
ids = self._mixture_distribution.sample(
sample_shape=concat_vectors(
[n],
distribution_util.pick_vector(
self.is_scalar_batch(),
np.int32([]),
[batch_size])),
seed=distribution_util.gen_new_seed(
seed, "poisson_lognormal_quadrature_compound"))
# Stride `quadrature_size` for `batch_size` number of times.
offset = math_ops.range(start=0,
limit=batch_size * self._quadrature_size,
delta=self._quadrature_size,
dtype=ids.dtype)
ids += offset
rate = array_ops.gather(
array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
rate = array_ops.reshape(
rate, shape=concat_vectors([n], self.batch_shape_tensor()))
return random_ops.random_poisson(
lam=rate, shape=[], dtype=self.dtype, seed=seed)
示例6: _make_columnar
def _make_columnar(self, x):
"""Ensures non-scalar input has at least one column.
Example:
If `x = [1, 2, 3]` then the output is `[[1], [2], [3]]`.
If `x = [[1, 2, 3], [4, 5, 6]]` then the output is unchanged.
If `x = 1` then the output is unchanged.
Args:
x: `Tensor`.
Returns:
columnar_x: `Tensor` with at least two dimensions.
"""
if x.get_shape().ndims is not None:
if x.get_shape().ndims == 1:
x = x[array_ops.newaxis, :]
return x
shape = array_ops.shape(x)
maybe_expanded_shape = array_ops.concat([
shape[:-1],
distribution_util.pick_vector(
math_ops.equal(array_ops.rank(x), 1),
[1], np.array([], dtype=np.int32)),
shape[-1:],
], 0)
return array_ops.reshape(x, maybe_expanded_shape)
示例7: testCorrectlyPicksVector
def testCorrectlyPicksVector(self):
with self.test_session():
x = np.arange(10, 12)
y = np.arange(15, 18)
self.assertAllEqual(x,
distribution_util.pick_vector(
math_ops.less(0, 5), x, y).eval())
self.assertAllEqual(y,
distribution_util.pick_vector(
math_ops.less(5, 0), x, y).eval())
self.assertAllEqual(x,
distribution_util.pick_vector(
constant_op.constant(True), x, y)) # No eval.
self.assertAllEqual(y,
distribution_util.pick_vector(
constant_op.constant(False), x, y)) # No eval.
示例8: _expand_sample_shape
def _expand_sample_shape(self, sample_shape):
"""Helper to `sample` which ensures sample_shape is 1D."""
sample_shape_static_val = tensor_util.constant_value(sample_shape)
ndims = sample_shape.get_shape().ndims
if sample_shape_static_val is None:
if ndims is None or not sample_shape.get_shape().is_fully_defined():
ndims = array_ops.rank(sample_shape)
expanded_shape = distribution_util.pick_vector(
math_ops.equal(ndims, 0),
np.array((1,), dtype=dtypes.int32.as_numpy_dtype()),
array_ops.shape(sample_shape))
sample_shape = array_ops.reshape(sample_shape, expanded_shape)
total = math_ops.reduce_prod(sample_shape) # reduce_prod([]) == 1
else:
if ndims is None:
raise ValueError(
"Shouldn't be here; ndims cannot be none when we have a "
"tf.constant shape.")
if ndims == 0:
sample_shape_static_val = np.reshape(sample_shape_static_val, [1])
sample_shape = ops.convert_to_tensor(
sample_shape_static_val,
dtype=dtypes.int32,
name="sample_shape")
total = np.prod(sample_shape_static_val,
dtype=dtypes.int32.as_numpy_dtype())
return sample_shape, total
示例9: testChooseVector
def testChooseVector(self):
with self.test_session():
x = np.arange(10, 12)
y = np.arange(15, 18)
self.assertAllEqual(
x, distribution_util.pick_vector(
tf.less(0, 5), x, y).eval())
self.assertAllEqual(
y, distribution_util.pick_vector(
tf.less(5, 0), x, y).eval())
self.assertAllEqual(
x, distribution_util.pick_vector(
tf.constant(True), x, y)) # No eval.
self.assertAllEqual(
y, distribution_util.pick_vector(
tf.constant(False), x, y)) # No eval.
示例10: _forward_log_det_jacobian
def _forward_log_det_jacobian(self, x):
if self._is_only_identity_multiplier:
# We don't pad in this case and instead let the fldj be applied
# via broadcast.
event_size = distribution_util.pick_vector(
math_ops.equal(self._shaper.event_ndims, 0),
[1], array_ops.shape(x))[-1]
event_size = math_ops.cast(event_size, dtype=self._scale.dtype)
return math_ops.log(math_ops.abs(self._scale)) * event_size
return self.scale.log_abs_determinant()
示例11: _sample_n
def _sample_n(self, n, seed=None):
# Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
# ids as a [n]-shaped vector.
batch_size = self.batch_shape.num_elements()
if batch_size is None:
batch_size = math_ops.reduce_prod(self.batch_shape_tensor())
# We need to "sample extra" from the mixture distribution if it doesn't
# already specify a probs vector for each batch coordinate.
# We only support this kind of reduced broadcasting, i.e., there is exactly
# one probs vector for all batch dims or one for each.
ids = self._mixture_distribution.sample(
sample_shape=concat_vectors(
[n],
distribution_util.pick_vector(
self.mixture_distribution.is_scalar_batch(),
[batch_size],
np.int32([]))),
seed=distribution_util.gen_new_seed(
seed, "poisson_lognormal_quadrature_compound"))
# We need to flatten batch dims in case mixture_distribution has its own
# batch dims.
ids = array_ops.reshape(ids, shape=concat_vectors(
[n],
distribution_util.pick_vector(
self.is_scalar_batch(),
np.int32([]),
np.int32([-1]))))
# Stride `quadrature_size` for `batch_size` number of times.
offset = math_ops.range(start=0,
limit=batch_size * self._quadrature_size,
delta=self._quadrature_size,
dtype=ids.dtype)
ids += offset
rate = array_ops.gather(
array_ops.reshape(self.distribution.rate, shape=[-1]), ids)
rate = array_ops.reshape(
rate, shape=concat_vectors([n], self.batch_shape_tensor()))
return random_ops.random_poisson(
lam=rate, shape=[], dtype=self.dtype, seed=seed)
示例12: _sample_n
def _sample_n(self, n, seed=None):
x = self.distribution.sample(
sample_shape=concat_vectors(
[n],
self.batch_shape_tensor(),
self.event_shape_tensor()),
seed=seed) # shape: [n, B, e]
x = [aff.forward(x) for aff in self.endpoint_affine]
# Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
# ids as a [n]-shaped vector.
batch_size = reduce_prod(self.batch_shape_tensor())
ids = self._mixture_distribution.sample(
sample_shape=concat_vectors(
[n],
distribution_util.pick_vector(
self.is_scalar_batch(),
np.int32([]),
[batch_size])),
seed=distribution_util.gen_new_seed(
seed, "vector_diffeomixture"))
# Stride `quadrature_degree` for `batch_size` number of times.
offset = math_ops.range(start=0,
limit=batch_size * len(self.quadrature_probs),
delta=len(self.quadrature_probs),
dtype=ids.dtype)
weight = array_ops.gather(
array_ops.reshape(self.interpolate_weight, shape=[-1]),
ids + offset)
weight = weight[..., array_ops.newaxis]
if len(x) != 2:
# We actually should have already triggered this exception. However as a
# policy we're putting this exception wherever we exploit the bimixture
# assumption.
raise NotImplementedError("Currently only bimixtures are supported; "
"len(scale)={} is not 2.".format(len(x)))
# Alternatively:
# x = weight * x[0] + (1. - weight) * x[1]
x = weight * (x[0] - x[1]) + x[1]
return x
示例13: _sample_n
def _sample_n(self, n, seed=None):
batch_size = reduce_prod(self.batch_shape_tensor())
x = self.distribution.sample(
sample_shape=concat_vectors(
[n * batch_size],
self.event_shape_tensor()),
seed=seed)
x = [array_ops.reshape(
aff.forward(x),
shape=concat_vectors(
[-1],
self.batch_shape_tensor(),
self.event_shape_tensor()))
for aff in self.endpoint_affine]
# Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get
# ids as a [n]-shaped vector.
ids = self._mixture_distribution.sample(
sample_shape=concat_vectors(
[n],
distribution_util.pick_vector(
self.is_scalar_batch(),
np.int32([]),
[batch_size])),
seed=distribution_util.gen_new_seed(
seed, "vector_diffeomixture"))
# Stride `self._degree` for `batch_size` number of times.
offset = math_ops.range(start=0,
limit=batch_size * self._degree,
delta=self._degree,
dtype=ids.dtype)
weight = array_ops.gather(
array_ops.reshape(self.interpolate_weight, shape=[-1]),
ids + offset)
weight = weight[..., array_ops.newaxis]
# Alternatively:
# x = weight * x[0] + (1. - weight) * x[1]
x = weight * (x[0] - x[1]) + x[1]
return x
示例14: _batch_shape_tensor
def _batch_shape_tensor(self):
return distribution_util.pick_vector(
self._is_batch_override,
self._override_batch_shape,
self.distribution.batch_shape_tensor())
示例15: _event_shape_tensor
def _event_shape_tensor(self):
return self.bijector.forward_event_shape_tensor(
distribution_util.pick_vector(
self._is_event_override,
self._override_event_shape,
self.distribution.event_shape_tensor()))