当前位置: 首页>>代码示例>>Python>>正文


Python values.select_device函数代码示例

本文整理汇总了Python中tensorflow.contrib.distribute.python.values.select_device函数的典型用法代码示例。如果您正苦于以下问题:Python select_device函数的具体用法?Python select_device怎么用?Python select_device使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了select_device函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testWrapClass

  def testWrapClass(self):
    # Normally a mirrored value would be the same across devices, but
    # for a test it is convenient to be able to tell the values apart.
    result = values.regroup({_device_str(0): _nested_value("1"),
                             _device_str(1): _nested_value("2")},
                            values.Mirrored)
    self.assertIsInstance(result, tuple)
    self.assertEqual(3, len(result))
    self._is_per_device(result[0], ["a1", "a2"], values.Mirrored)
    self._is_per_device(result[2], ["h1", "h2"], values.Mirrored)

    self.assertIsInstance(result[1], list)
    self.assertEqual(3, len(result[1]))
    self._is_per_device(result[1][0], ["b1", "b2"], values.Mirrored)
    self._is_per_device(result[1][2], ["g1", "g2"], values.Mirrored)

    self.assertIsInstance(result[1][1], dict)
    self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
    self._is_per_device(result[1][1]["c"], ["d1", "d2"], values.Mirrored)
    self._is_per_device(result[1][1]["e"], ["f1", "f2"], values.Mirrored)

    # Also test that we can undo the merge using select_device()
    self.assertEqual(_nested_value("1"),
                     values.select_device(_device_str(0), result))
    self.assertEqual(_nested_value("2"),
                     values.select_device(_device_str(1), result))
    # Values are marked as mirrored, so select_device_mirrored() is allowed.
    self.assertEqual(_nested_value("1"),
                     values.select_device_mirrored(_device_str(0), result))
    self.assertEqual(_nested_value("2"),
                     values.select_device_mirrored(_device_str(1), result))
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:31,代码来源:values_test.py

示例2: testNested

  def testNested(self):
    result = values.regroup({_device_str(0): _nested_value("1"),
                             _device_str(1): _nested_value("2")})
    self.assertIsInstance(result, tuple)
    self.assertEqual(3, len(result))
    self._is_per_device(result[0], ["a1", "a2"])
    self._is_per_device(result[2], ["h1", "h2"])

    self.assertIsInstance(result[1], list)
    self.assertEqual(3, len(result[1]))
    self._is_per_device(result[1][0], ["b1", "b2"])
    self._is_per_device(result[1][2], ["g1", "g2"])

    self.assertIsInstance(result[1][1], dict)
    self.assertEqual(set(["c", "e"]), set(result[1][1].keys()))
    self._is_per_device(result[1][1]["c"], ["d1", "d2"])
    self._is_per_device(result[1][1]["e"], ["f1", "f2"])

    # Also test that we can undo the merge using select_device()
    self.assertEqual(_nested_value("1"),
                     values.select_device(_device_str(0), result))
    self.assertEqual(_nested_value("2"),
                     values.select_device(_device_str(1), result))
    # select_device_mirrored() should fail due to non-mirrored values
    with self.assertRaises(TypeError):
      values.select_device_mirrored(_device_str(0), result)
    with self.assertRaises(TypeError):
      values.select_device_mirrored(_device_str(1), result)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:28,代码来源:values_test.py

示例3: _test_iterator

  def _test_iterator(self, input_fn, worker_device_pairs, expected_values,
                     sess=None):
    devices = nest.flatten([ds for _, ds in worker_device_pairs])
    iterator = values.InputFunctionIterator(input_fn, worker_device_pairs)

    evaluate = lambda x: sess.run(x) if sess else self.evaluate(x)

    evaluate(iterator.initialize())

    for expected_value in expected_values:
      next_element = iterator.get_next()
      computed_value = evaluate(
          [values.select_device(d, next_element) for d in devices])
      self.assertEqual(expected_value, computed_value)

    with self.assertRaises(errors.OutOfRangeError):
      next_element = iterator.get_next()
      evaluate([values.select_device(d, next_element) for d in devices])

    # After re-initializing the iterator, should be able to iterate again.
    evaluate(iterator.initialize())

    for expected_value in expected_values:
      next_element = iterator.get_next()
      computed_value = evaluate(
          [values.select_device(d, next_element) for d in devices])
      self.assertEqual(expected_value, computed_value)
开发者ID:abhinav-upadhyay,项目名称:tensorflow,代码行数:27,代码来源:values_test.py

示例4: _test_iterator

  def _test_iterator(self, iterator, devices, expected_values):
    next_element = iterator.get_next()
    for device in devices:
      v = values.select_device(device, next_element)
      # The `v` here can be a tuple.
      for element in nest.flatten(v):
        self.assertTrue(element.device in device)

    for expected_value in expected_values:
      actual = self.evaluate(
          [values.select_device(d, next_element) for d in devices])
      self.assertEqual(expected_value, actual)

    with self.assertRaises(errors.OutOfRangeError):
      self.evaluate([values.select_device(d, next_element) for d in devices])
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:15,代码来源:values_test.py

示例5: _test_iterator_no_prefetch

  def _test_iterator_no_prefetch(self, devices, dataset, expected_values):
    per_device_dataset = values.PerDeviceDataset(
        dataset, devices, prefetch_on_device=False)
    iterator = per_device_dataset.make_one_shot_iterator()

    for expected_value in expected_values:
      next_element = iterator.get_next()
      actual = self.evaluate([
          values.select_device(d, next_element) for d in devices])
      self.assertEqual(expected_value, actual)

    with self.assertRaises(errors.OutOfRangeError):
      next_element = iterator.get_next()
      self.evaluate([
          values.select_device(d, next_element) for d in devices])
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:15,代码来源:values_test.py

示例6: testNamedTupleEstimatorSpec

  def testNamedTupleEstimatorSpec(self):
    with context.graph_mode(), ops.Graph().as_default():
      created_estimator_specs = {}
      to_regroup = {}

      for device_id in range(3):
        spec = model_fn_lib.EstimatorSpec(
            mode=model_fn_lib.ModeKeys.TRAIN,
            loss=constant_op.constant(device_id / 2),
            train_op=array_ops.identity(constant_op.constant(device_id)))
        created_estimator_specs[device_id] = spec
        to_regroup[_device_str(device_id)] = spec

      merged_estimator_spec = values.regroup(to_regroup)

      self.assertTrue(
          isinstance(merged_estimator_spec, model_fn_lib.EstimatorSpec))
      self.assertEquals(model_fn_lib.ModeKeys.TRAIN, merged_estimator_spec.mode)
      for device_id in range(3):
        d = _device_str(device_id)
        self.assertEquals(created_estimator_specs[device_id].loss,
                          merged_estimator_spec.loss.get(d))
        self.assertEquals(created_estimator_specs[device_id].train_op,
                          merged_estimator_spec.train_op.get(d))
        # Scaffold is populated by `EstimatorSpec.__new__`.
        self.assertEquals(created_estimator_specs[device_id].scaffold,
                          merged_estimator_spec.scaffold.get(d))
        # Also test that we can undo the merge using select_device()
        self.assertEquals(created_estimator_specs[device_id],
                          values.select_device(_device_str(device_id),
                                               merged_estimator_spec))
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:31,代码来源:values_test.py

示例7: _test_iterator_with_prefetch

  def _test_iterator_with_prefetch(self, devices, dataset, expected_values):
    if not context.executing_eagerly():
      per_device_dataset = values.PerDeviceDataset(
          dataset, devices, prefetch_on_device=True)
      iterator = per_device_dataset.make_initializable_iterator()
      self.evaluate([iterator.initializer])

      for expected_value in expected_values:
        next_element = iterator.get_next()
        computed_value = self.evaluate(
            [values.select_device(d, next_element) for d in devices])
        self.assertEqual(expected_value, computed_value)

      with self.assertRaises(errors.OutOfRangeError):
        next_element = iterator.get_next()
        self.evaluate([
            values.select_device(d, next_element) for d in devices])
开发者ID:baojianzhou,项目名称:tensorflow,代码行数:17,代码来源:values_test.py

示例8: testSameId

  def testSameId(self):
    foo = object()
    result = values.regroup({_device_str(0): ("a", foo),
                             _device_str(1): ("b", foo)})
    self.assertIsInstance(result, tuple)
    self.assertEqual(2, len(result))
    self._is_per_device(result[0], ["a", "b"])
    self.assertIs(foo, result[1])

    # Test select_device(), should undo the merge done by regroup().
    result_0 = values.select_device(_device_str(0), result)
    self.assertIsInstance(result_0, tuple)
    self.assertEqual(2, len(result_0))
    self.assertEqual("a", result_0[0])
    self.assertIs(foo, result_0[1])
    result_1 = values.select_device(_device_str(1), result)
    self.assertIsInstance(result_1, tuple)
    self.assertEqual(2, len(result_1))
    self.assertEqual("b", result_1[0])
    self.assertIs(foo, result_1[1])
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:20,代码来源:values_test.py

示例9: _call_and_check

  def _call_and_check(self, model_fn, inputs, expected_result, defuns,
                      two_variables=False):
    cpu_dev = device_util.canonicalize("CPU:0")
    gpu_dev = device_util.canonicalize("GPU:0")
    devices = [cpu_dev, gpu_dev]
    dist = mirrored_strategy.MirroredStrategy(devices)

    with dist.scope():
      mock_model = MockModel(two_variables)
      self.evaluate(variables.global_variables_initializer())

      result = dist.call_for_each_tower(model_fn, mock_model, *inputs,
                                        run_concurrently=False)
      for device in devices:
        device_result = values.select_device(device, result)
        device_expected_result = values.select_device(device, expected_result)
        self.assertAllClose(device_expected_result,
                            self.evaluate(device_result))

      for defun in defuns:
        self.assertEqual(set(mock_model.variables), set(defun.variables))
开发者ID:sonnyhu,项目名称:tensorflow,代码行数:21,代码来源:mirrored_strategy_multigpu_test.py

示例10: _test_iterator_with_prefetch

  def _test_iterator_with_prefetch(self, devices, dataset, expected_values):
    if not context.executing_eagerly():
      per_device_dataset = values.PerDeviceDataset(
          dataset, devices, prefetch_on_device=True)
      iterator = per_device_dataset.make_one_shot_iterator()

      # With prefetching, we cannot guarantee which input ends up on which
      # device, so we verify that the complete set seen on all devices is
      # correct, and equal numbers are distributed to each device.
      combined_actual = []
      combined_expected = []
      for expected_value in expected_values:
        next_element = iterator.get_next()
        combined_actual.extend(self.evaluate([
            values.select_device(d, next_element) for d in devices]))
        combined_expected.extend(expected_value)

      self.assertEqual(set(combined_expected), set(combined_actual))

      with self.assertRaises(errors.OutOfRangeError):
        next_element = iterator.get_next()
        self.evaluate([
            values.select_device(d, next_element) for d in devices])
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:23,代码来源:values_test.py

示例11: testOneDevice

  def testOneDevice(self):
    result = values.regroup({_device_str(0): _nested_value("1")})
    # On one device regroup() and select_device() are basically identity.
    self.assertEqual(_nested_value("1"), result)
    self.assertEqual(_nested_value("1"),
                     values.select_device(_device_str(0), result))

    # The one exception has to do with MirroredVariables.
    d = "/device:CPU:0"
    with ops.device(d):
      v = variable_scope.get_variable(
          name="v", initializer=1., use_resource=True)
      index = {d: v}
    mirrored = values.MirroredVariable(index, v)
    result = values.regroup(index)
    self.assertIs(mirrored, result)
开发者ID:Huoxubeiyin,项目名称:tensorflow,代码行数:16,代码来源:values_test.py

示例12: _call_for_each_tower


#.........这里部分代码省略.........
           `True`.

  Returns:
    Merged return value of `fn` across all towers.

  Raises:
    RuntimeError: If fn() calls get_tower_context().merge_call() a different
        number of times from the available devices.
  """
  run_concurrently = kwargs.pop("run_concurrently", True)
  if not context.executing_eagerly():
    # Lots of TF library code isn't thread-safe in graph mode, and
    # there is little to be gained by turning on multithreading when
    # constructing a graph.
    run_concurrently = False
    # Needed for per-thread device, etc. contexts in graph mode.
    ops.get_default_graph().switch_to_thread_local()
  elif run_concurrently is None:
    run_concurrently = True

  coord = coordinator.Coordinator(clean_stop_exception_types=(_RequestedStop,))

  shared_variable_store = {}

  # TODO(isaprykin): Create these threads once instead of during every run()
  # call.
  threads = []
  for index, d in enumerate(distribution.worker_devices):
    variable_creator_fn = shared_variable_creator.make_fn(
        shared_variable_store, index)
    t = MirroredStrategy._MirroredTowerThread(  # pylint: disable=protected-access
        distribution, coord, d, variable_creator_fn, fn,
        *values.select_device(d, args), **values.select_device(d, kwargs))
    threads.append(t)

  for t in threads:
    t.start()

  # When `fn` starts `should_run` event is set on _MirroredTowerThread
  # (`MTT`) threads. The execution waits until
  # `MTT.has_paused` is set, which indicates that either `fn` is
  # complete or a `get_tower_context().merge_call()` is called.  If `fn` is
  # complete, then `MTT.done` is set to True.  Otherwise, arguments
  # of `get_tower_context().merge_call` from all paused threads are grouped
  # and the `merge_fn` is performed.  Results of the
  # `get_tower_context().merge_call` are then set to `MTT.merge_result`.
  # Each such `get_tower_context().merge_call` call returns the
  # `MTT.merge_result` for that thread when `MTT.should_run` event
  # is reset again. Execution of `fn` resumes.

  try:
    with coord.stop_on_exception():
      all_done = False
      while not all_done and not coord.should_stop():
        done = []
        if run_concurrently:
          for t in threads:
            t.should_run.set()
          for t in threads:
            t.has_paused.wait()
            t.has_paused.clear()
            if coord.should_stop():
              return None
            done.append(t.done)
        else:
          for t in threads:
            t.should_run.set()
            t.has_paused.wait()
            t.has_paused.clear()
            if coord.should_stop():
              return None
            done.append(t.done)
        if coord.should_stop():
          return None
        all_done = all(done)
        if not all_done:
          if any(done):
            raise RuntimeError("Some towers made a different number of "
                               "tower_context().merge_call() calls.")
          # get_tower_context().merge_call() case
          merge_args = values.regroup({t.device: t.merge_args for t in threads})
          merge_kwargs = values.regroup(
              {t.device: t.merge_kwargs for t in threads})
          # We capture the name_scope of the MTT when we call merge_fn
          # to ensure that if we have opened a name scope in the MTT,
          # it will be respected when executing the merge function. We only
          # capture the name_scope from the first MTT and assume it is
          # the same for all other MTTs.
          mtt_captured_name_scope = threads[0].captured_name_scope
          with ops.name_scope(mtt_captured_name_scope):
            merge_result = threads[0].merge_fn(distribution, *merge_args,
                                               **merge_kwargs)
          for t in threads:
            t.merge_result = values.select_device(t.device, merge_result)
  finally:
    for t in threads:
      t.should_run.set()
    coord.join(threads)

  return values.regroup({t.device: t.main_result for t in threads})
开发者ID:Jordan1237,项目名称:tensorflow,代码行数:101,代码来源:mirrored_strategy.py


注:本文中的tensorflow.contrib.distribute.python.values.select_device函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。