当前位置: 首页>>代码示例>>Python>>正文


Python model_ops.tree_ensemble_variable函数代码示例

本文整理汇总了Python中tensorflow.contrib.boosted_trees.python.ops.model_ops.tree_ensemble_variable函数的典型用法代码示例。如果您正苦于以下问题:Python tree_ensemble_variable函数的具体用法?Python tree_ensemble_variable怎么用?Python tree_ensemble_variable使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了tree_ensemble_variable函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testAverageMoreThanNumTreesExist

  def testAverageMoreThanNumTreesExist(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      adjusted_tree_ensemble_config = (
          tree_config_pb2.DecisionTreeEnsembleConfig())
      # When we say to average over more trees than possible, it is averaging
      # across all trees.
      total_num = 100
      for i in range(0, total_num):
        tree = tree_ensemble_config.trees.add()
        _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)

        tree_ensemble_config.tree_metadata.add().is_finalized = True
        tree_ensemble_config.tree_weights.append(1.0)
        # This is how the weight will look after averaging
        copy_tree = adjusted_tree_ensemble_config.trees.add()
        _append_to_leaf(copy_tree.nodes.add().leaf, 0, -0.4)

        adjusted_tree_ensemble_config.tree_metadata.add().is_finalized = True
        adjusted_tree_ensemble_config.tree_weights.append(
            1.0 * (total_num - i) / total_num)

      # Prepare learner config WITH AVERAGING.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 2
      # We have only 100 trees but we ask to average over 250.
      learner_config.averaging_config.average_last_n_trees = 250

      # No averaging config.
      learner_config_no_averaging = learner_pb2.LearnerConfig()
      learner_config_no_averaging.num_classes = 2

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="existing")

      # This is how our ensemble will "look" during averaging
      adjusted_tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=adjusted_tree_ensemble_config.SerializeToString(
          ),
          name="adjusted")

      resources.initialize_resources(resources.shared_resources()).run()

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config.SerializeToString(),
          apply_averaging=True,
          reduce_dim=True)

      pattern_result, pattern_dropout_info = self._get_predictions(
          adjusted_tree_ensemble_handle,
          learner_config_no_averaging.SerializeToString(),
          apply_averaging=False,
          reduce_dim=True)

      self.assertAllEqual(result.eval(), pattern_result.eval())
      self.assertAllEqual(dropout_info.eval(), pattern_dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:60,代码来源:prediction_ops_test.py

示例2: testBiasEnsembleMultiClass

  def testBiasEnsembleMultiClass(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      tree = tree_ensemble_config.trees.add()
      tree_ensemble_config.tree_metadata.add().is_finalized = True
      leaf = tree.nodes.add().leaf
      _append_to_leaf(leaf, 0, -0.4)
      _append_to_leaf(leaf, 1, 0.9)

      tree_ensemble_config.tree_weights.append(1.0)

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="multiclass")
      resources.initialize_resources(resources.shared_resources()).run()

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 3

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          reduce_dim=True)
      self.assertAllClose([[-0.4, 0.9], [-0.4, 0.9]], result.eval())

      # Empty dropout.
      self.assertAllEqual([[], []], dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:29,代码来源:prediction_ops_test.py

示例3: testCreate

  def testCreate(self):
    with self.cached_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      tree = tree_ensemble_config.trees.add()
      _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)
      tree_ensemble_config.tree_weights.append(1.0)

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 2

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=3,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="create_tree")
      resources.initialize_resources(resources.shared_resources()).run()

      result, _ = prediction_ops.gradient_trees_prediction(
          tree_ensemble_handle,
          self._seed, [self._dense_float_tensor], [
              self._sparse_float_indices1, self._sparse_float_indices2
          ], [self._sparse_float_values1, self._sparse_float_values2],
          [self._sparse_float_shape1,
           self._sparse_float_shape2], [self._sparse_int_indices1],
          [self._sparse_int_values1], [self._sparse_int_shape1],
          learner_config=learner_config.SerializeToString(),
          apply_dropout=False,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)
      self.assertAllClose(result.eval(), [[-0.4], [-0.4]])
      stamp_token = model_ops.tree_ensemble_stamp_token(tree_ensemble_handle)
      self.assertEqual(stamp_token.eval(), 3)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:33,代码来源:model_ops_test.py

示例4: testTreeFinalized

  def testTreeFinalized(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Depth 3 tree.
      tree1 = tree_ensemble_config.trees.add()
      _set_float_split(tree1.nodes.add().dense_float_binary_split, 0, 9.0, 1, 2)
      _set_float_split(tree1.nodes.add()
                       .sparse_float_binary_split_default_left.split, 0, -20.0,
                       3, 4)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.2)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.3)
      _set_categorical_id_split(tree1.nodes.add().categorical_id_binary_split,
                                0, 9, 5, 6)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.5)
      _append_to_leaf(tree1.nodes.add().leaf, 0, 0.6)

      tree_ensemble_config.tree_weights.append(1.0)
      tree_ensemble_config.tree_metadata.add().is_finalized = True

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="full_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()

      result = prediction_ops.gradient_trees_partition_examples(
          tree_ensemble_handle, [self._dense_float_tensor], [
              self._sparse_float_indices1, self._sparse_float_indices2
          ], [self._sparse_float_values1, self._sparse_float_values2],
          [self._sparse_float_shape1,
           self._sparse_float_shape2], [self._sparse_int_indices1],
          [self._sparse_int_values1], [self._sparse_int_shape1])

      self.assertAllEqual([0, 0], result.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:34,代码来源:prediction_ops_test.py

示例5: testDropout

  def testDropout(self):
    with self.test_session():
      # Empty tree ensenble.
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Add 1000 trees with some weights.
      for i in range(0, 999):
        tree = tree_ensemble_config.trees.add()
        tree_ensemble_config.tree_metadata.add().is_finalized = True
        _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)
        tree_ensemble_config.tree_weights.append(i + 1)

      # Prepare learner/dropout config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.learning_rate_tuner.dropout.dropout_probability = 0.5
      learner_config.learning_rate_tuner.dropout.learning_rate = 1.0
      learner_config.num_classes = 2

      # Apply dropout.
      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="existing")
      resources.initialize_resources(resources.shared_resources()).run()

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          apply_dropout=True,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)

      # We expect approx 500 trees were dropped.
      dropout_info = dropout_info.eval()
      self.assertIn(dropout_info[0].size, range(400, 601))
      self.assertEqual(dropout_info[0].size, dropout_info[1].size)

      for i in range(dropout_info[0].size):
        dropped_index = dropout_info[0][i]
        dropped_weight = dropout_info[1][i]
        # We constructed the trees so tree number + 1 is the tree weight, so
        # we can check here the weights for dropped trees.
        self.assertEqual(dropped_index + 1, dropped_weight)

      # Don't apply dropout.
      result_no_dropout, no_dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          apply_dropout=False,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)

      self.assertEqual(result.eval().size, result_no_dropout.eval().size)
      for i in range(result.eval().size):
        self.assertNotEqual(result.eval()[i], result_no_dropout.eval()[i])

      # We expect none of the trees were dropped.
      self.assertAllEqual([[], []], no_dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:59,代码来源:prediction_ops_test.py

示例6: testWithExistingEnsembleAndShrinkage

  def testWithExistingEnsembleAndShrinkage(self):
    with self.test_session():
      # Add shrinkage config.
      learning_rate = 0.0001
      tree_ensemble = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Add 10 trees with some weights.
      for i in range(0, 5):
        tree = tree_ensemble.trees.add()
        _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)
        tree_ensemble.tree_weights.append(i + 1)
        meta = tree_ensemble.tree_metadata.add()
        meta.num_tree_weight_updates = 1
      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble.SerializeToString(),
          name="existing")

      # Create non-zero feature importance.
      feature_usage_counts = variables.Variable(
          initial_value=np.array([4, 7], np.int64),
          name="feature_usage_counts",
          trainable=False)
      feature_gains = variables.Variable(
          initial_value=np.array([0.2, 0.8], np.float32),
          name="feature_gains",
          trainable=False)

      resources.initialize_resources(resources.shared_resources()).run()
      variables.initialize_all_variables().run()

      output_ensemble = tree_config_pb2.DecisionTreeEnsembleConfig()
      with ops.control_dependencies([
          ensemble_optimizer_ops.add_trees_to_ensemble(
              tree_ensemble_handle,
              self._ensemble_to_add.SerializeToString(),
              feature_usage_counts, [1, 2],
              feature_gains, [0.5, 0.3], [[], []],
              learning_rate=learning_rate)
      ]):
        output_ensemble.ParseFromString(
            model_ops.tree_ensemble_serialize(tree_ensemble_handle)[1].eval())

      # The weights of previous trees stayed the same, new tree (LAST) is added
      # with shrinkage weight.
      self.assertAllClose([1.0, 2.0, 3.0, 4.0, 5.0, learning_rate],
                          output_ensemble.tree_weights)

      # Check that all number of updates are equal to 1 (e,g, no old tree weight
      # got adjusted.
      for i in range(0, 6):
        self.assertEqual(
            1, output_ensemble.tree_metadata[i].num_tree_weight_updates)

      # Ensure feature importance was aggregated correctly.
      self.assertAllEqual([5, 9], feature_usage_counts.eval())
      self.assertArrayNear(
          [0.2 + 0.5 * learning_rate, 0.8 + 0.3 * learning_rate],
          feature_gains.eval(), 1e-6)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:58,代码来源:ensemble_optimizer_ops_test.py

示例7: testPredictFn

  def testPredictFn(self):
    """Tests the predict function."""
    with self.test_session() as sess:
      # Create ensemble with one bias node.
      ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      text_format.Merge("""
          trees {
            nodes {
              leaf {
                vector {
                  value: 0.25
                }
              }
            }
          }
          tree_weights: 1.0
          tree_metadata {
            num_tree_weight_updates: 1
            num_layers_grown: 1
            is_finalized: true
          }""", ensemble_config)
      ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=3,
          tree_ensemble_config=ensemble_config.SerializeToString(),
          name="tree_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()
      learner_config = learner_pb2.LearnerConfig()
      learner_config.learning_rate_tuner.fixed.learning_rate = 0.1
      learner_config.num_classes = 2
      learner_config.regularization.l1 = 0
      learner_config.regularization.l2 = 0
      learner_config.constraints.max_tree_depth = 1
      learner_config.constraints.min_node_weight = 0
      features = {}
      features["dense_float"] = array_ops.ones([4, 1], dtypes.float32)
      gbdt_model = gbdt_batch.GradientBoostedDecisionTreeModel(
          is_chief=False,
          num_ps_replicas=0,
          center_bias=True,
          ensemble_handle=ensemble_handle,
          examples_per_layer=1,
          learner_config=learner_config,
          features=features)

      # Create predict op.
      mode = model_fn.ModeKeys.EVAL
      predictions_dict = sess.run(gbdt_model.predict(mode))
      self.assertEquals(predictions_dict["ensemble_stamp"], 3)
      self.assertAllClose(predictions_dict["predictions"], [[0.25], [0.25],
                                                            [0.25], [0.25]])
      self.assertAllClose(predictions_dict["partition_ids"], [0, 0, 0, 0])
开发者ID:chdinh,项目名称:tensorflow,代码行数:51,代码来源:gbdt_batch_test.py

示例8: testMetadataMissing

  def testMetadataMissing(self):
    # Sometimes we want to do prediction on trees that are not added to ensemble
    # (for example in
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Bias tree.
      tree1 = tree_ensemble_config.trees.add()
      _append_to_leaf(tree1.nodes.add().leaf, 0, -0.4)

      # Depth 3 tree.
      tree2 = tree_ensemble_config.trees.add()
      # We are not setting the tree_ensemble_config.tree_metadata in this test.
      _set_float_split(tree2.nodes.add().dense_float_binary_split, 0, 9.0, 1, 2)
      _set_float_split(tree2.nodes.add()
                       .sparse_float_binary_split_default_left.split, 0, -20.0,
                       3, 4)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 0.5)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 1.2)
      _set_categorical_id_split(tree2.nodes.add().categorical_id_binary_split,
                                0, 9, 5, 6)
      _append_to_leaf(tree2.nodes.add().leaf, 0, -0.9)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 0.7)

      tree_ensemble_config.tree_weights.append(1.0)
      tree_ensemble_config.tree_weights.append(1.0)

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="full_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 2

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          reduce_dim=True)

      # The first example will get bias -0.4 from first tree and
      # leaf 4 payload of -0.9 hence -1.3, the second example will
      # get the same bias -0.4 and leaf 3 payload (sparse feature missing)
      # of 1.2 hence 0.8.
      self.assertAllClose([[-1.3], [0.8]], result.eval())

      # Empty dropout.
      self.assertAllEqual([[], []], dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:49,代码来源:prediction_ops_test.py

示例9: testUsedHandlers

 def testUsedHandlers(self):
   with self.cached_session():
     tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
     tree_ensemble_config.growing_metadata.used_handler_ids.append(1)
     tree_ensemble_config.growing_metadata.used_handler_ids.append(5)
     stamp_token = 3
     tree_ensemble_handle = model_ops.tree_ensemble_variable(
         stamp_token=stamp_token,
         tree_ensemble_config=tree_ensemble_config.SerializeToString(),
         name="create_tree")
     resources.initialize_resources(resources.shared_resources()).run()
     result = model_ops.tree_ensemble_used_handlers(
         tree_ensemble_handle, stamp_token, num_all_handlers=6)
     self.assertAllEqual([0, 1, 0, 0, 0, 1], result.used_handlers_mask.eval())
     self.assertEqual(2, result.num_used_handlers.eval())
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:15,代码来源:model_ops_test.py

示例10: testExcludeNonFinalTree

  def testExcludeNonFinalTree(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Bias tree.
      tree1 = tree_ensemble_config.trees.add()
      tree_ensemble_config.tree_metadata.add().is_finalized = True
      _append_to_leaf(tree1.nodes.add().leaf, 0, -0.4)

      # Depth 3 tree.
      tree2 = tree_ensemble_config.trees.add()
      tree_ensemble_config.tree_metadata.add().is_finalized = False
      _set_float_split(tree2.nodes.add().dense_float_binary_split, 0, 9.0, 1, 2)
      _set_float_split(tree2.nodes.add()
                       .sparse_float_binary_split_default_left.split, 0, -20.0,
                       3, 4)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 0.5)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 1.2)
      _set_categorical_id_split(tree2.nodes.add().categorical_id_binary_split,
                                0, 9, 5, 6)
      _append_to_leaf(tree2.nodes.add().leaf, 0, -0.9)
      _append_to_leaf(tree2.nodes.add().leaf, 0, 0.7)

      tree_ensemble_config.tree_weights.append(1.0)
      tree_ensemble_config.tree_weights.append(1.0)

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="full_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 2
      learner_config.growing_mode = learner_pb2.LearnerConfig.WHOLE_TREE

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          reduce_dim=True)

      # All the examples should get only the bias since the second tree is
      # non-finalized
      self.assertAllClose([[-0.4], [-0.4]], result.eval())

      # Empty dropout.
      self.assertAllEqual([[], []], dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:47,代码来源:prediction_ops_test.py

示例11: testFullEnsembleMultiNotClassTreePerClassStrategyDenseVector

  def testFullEnsembleMultiNotClassTreePerClassStrategyDenseVector(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Bias tree only for second class.
      tree1 = tree_ensemble_config.trees.add()
      tree_ensemble_config.tree_metadata.add().is_finalized = True
      _append_multi_values_to_dense_leaf(tree1.nodes.add().leaf, [0, -0.2, -2])

      # Depth 2 tree.
      tree2 = tree_ensemble_config.trees.add()
      tree_ensemble_config.tree_metadata.add().is_finalized = True
      _set_float_split(tree2.nodes.add()
                       .sparse_float_binary_split_default_right.split, 1, 4.0,
                       1, 2)
      _set_float_split(tree2.nodes.add().dense_float_binary_split, 0, 9.0, 3, 4)
      _append_multi_values_to_dense_leaf(tree2.nodes.add().leaf, [0.5, 0, 0])
      _append_multi_values_to_dense_leaf(tree2.nodes.add().leaf, [0, 1.2, -0.7])
      _append_multi_values_to_dense_leaf(tree2.nodes.add().leaf, [-0.9, 0, 0])

      tree_ensemble_config.tree_weights.append(1.0)
      tree_ensemble_config.tree_weights.append(1.0)

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="ensemble_multi_class")
      resources.initialize_resources(resources.shared_resources()).run()

      # Prepare learner config.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.num_classes = 3
      learner_config.multi_class_strategy = (
          learner_pb2.LearnerConfig.FULL_HESSIAN)

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          reduce_dim=False)
      # The first example will get bias class 1 -0.2 and -2 for class 2 from
      # first tree and leaf 2 payload (sparse feature missing) of 0.5 hence
      # 0.5, -0.2], the second example will get the same bias and leaf 3 payload
      # of class 1 1.2 and class 2-0.7 hence [0.0, 1.0, -2.7].
      self.assertAllClose([[0.5, -0.2, -2.0], [0, 1.0, -2.7]], result.eval())

      # Empty dropout.
      self.assertAllEqual([[], []], dropout_info.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:46,代码来源:prediction_ops_test.py

示例12: testWithExistingEnsemble

  def testWithExistingEnsemble(self):
    with self.test_session():
      # Create existing tree ensemble.
      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=self._tree_ensemble.SerializeToString(),
          name="existing")
      # Create non-zero feature importance.
      feature_usage_counts = variables.Variable(
          initial_value=np.array([0, 4, 1], np.int64),
          name="feature_usage_counts",
          trainable=False)
      feature_gains = variables.Variable(
          initial_value=np.array([0.0, 0.3, 0.05], np.float32),
          name="feature_gains",
          trainable=False)

      resources.initialize_resources(resources.shared_resources()).run()
      variables.initialize_all_variables().run()
      output_ensemble = tree_config_pb2.DecisionTreeEnsembleConfig()
      with ops.control_dependencies([
          ensemble_optimizer_ops.add_trees_to_ensemble(
              tree_ensemble_handle,
              self._ensemble_to_add.SerializeToString(),
              feature_usage_counts, [1, 2, 0],
              feature_gains, [0.02, 0.1, 0.0], [[], []],
              learning_rate=1)
      ]):
        output_ensemble.ParseFromString(
            model_ops.tree_ensemble_serialize(tree_ensemble_handle)[1].eval())

      # Output.
      self.assertEqual(3, len(output_ensemble.trees))
      self.assertProtoEquals(self._tree_to_add, output_ensemble.trees[2])

      self.assertAllEqual([1.0, 1.0, 1.0], output_ensemble.tree_weights)

      self.assertEqual(2,
                       output_ensemble.tree_metadata[0].num_tree_weight_updates)
      self.assertEqual(3,
                       output_ensemble.tree_metadata[1].num_tree_weight_updates)
      self.assertEqual(1,
                       output_ensemble.tree_metadata[2].num_tree_weight_updates)
      self.assertAllEqual([1, 6, 1], feature_usage_counts.eval())
      self.assertArrayNear([0.02, 0.4, 0.05], feature_gains.eval(), 1e-6)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:45,代码来源:ensemble_optimizer_ops_test.py

示例13: testEnsembleEmpty

  def testEnsembleEmpty(self):
    with self.test_session():
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()

      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="full_ensemble")
      resources.initialize_resources(resources.shared_resources()).run()

      result = prediction_ops.gradient_trees_partition_examples(
          tree_ensemble_handle, [self._dense_float_tensor], [
              self._sparse_float_indices1, self._sparse_float_indices2
          ], [self._sparse_float_values1, self._sparse_float_values2],
          [self._sparse_float_shape1,
           self._sparse_float_shape2], [self._sparse_int_indices1],
          [self._sparse_int_values1], [self._sparse_int_shape1])

      self.assertAllEqual([0, 0], result.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:19,代码来源:prediction_ops_test.py

示例14: testWithEmptyEnsembleAndShrinkage

  def testWithEmptyEnsembleAndShrinkage(self):
    with self.test_session():
      # Add shrinkage config.
      learning_rate = 0.0001
      tree_ensemble = tree_config_pb2.DecisionTreeEnsembleConfig()
      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble.SerializeToString(),
          name="existing")

      # Create zero feature importance.
      feature_usage_counts = variables.Variable(
          initial_value=np.array([0, 0], np.int64),
          name="feature_usage_counts",
          trainable=False)
      feature_gains = variables.Variable(
          initial_value=np.array([0.0, 0.0], np.float32),
          name="feature_gains",
          trainable=False)

      resources.initialize_resources(resources.shared_resources()).run()
      variables.initialize_all_variables().run()

      output_ensemble = tree_config_pb2.DecisionTreeEnsembleConfig()
      with ops.control_dependencies([
          ensemble_optimizer_ops.add_trees_to_ensemble(
              tree_ensemble_handle,
              self._ensemble_to_add.SerializeToString(),
              feature_usage_counts, [1, 2],
              feature_gains, [0.5, 0.3], [[], []],
              learning_rate=learning_rate)
      ]):
        output_ensemble.ParseFromString(
            model_ops.tree_ensemble_serialize(tree_ensemble_handle)[1].eval())

      # New tree is added with shrinkage weight.
      self.assertAllClose([learning_rate], output_ensemble.tree_weights)
      self.assertEqual(1,
                       output_ensemble.tree_metadata[0].num_tree_weight_updates)
      self.assertAllEqual([1, 2], feature_usage_counts.eval())
      self.assertArrayNear([0.5 * learning_rate, 0.3 * learning_rate],
                           feature_gains.eval(), 1e-6)
开发者ID:1000sprites,项目名称:tensorflow,代码行数:42,代码来源:ensemble_optimizer_ops_test.py

示例15: testDropOutZeroProb

  def testDropOutZeroProb(self):
    with self.test_session():
      # Empty tree ensenble.
      tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig()
      # Add 1000 trees with some weights.
      for i in range(0, 999):
        tree = tree_ensemble_config.trees.add()
        tree_ensemble_config.tree_metadata.add().is_finalized = True
        _append_to_leaf(tree.nodes.add().leaf, 0, -0.4)
        tree_ensemble_config.tree_weights.append(i + 1)

      # Dropout with 0 probability.
      learner_config = learner_pb2.LearnerConfig()
      learner_config.learning_rate_tuner.dropout.dropout_probability = 0.0
      learner_config.learning_rate_tuner.dropout.learning_rate = 1.0
      learner_config.num_classes = 2

      # Apply dropout, but expect nothing dropped.
      tree_ensemble_handle = model_ops.tree_ensemble_variable(
          stamp_token=0,
          tree_ensemble_config=tree_ensemble_config.SerializeToString(),
          name="existing")
      resources.initialize_resources(resources.shared_resources()).run()

      result, dropout_info = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          apply_dropout=True,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)

      result_no_dropout, _ = self._get_predictions(
          tree_ensemble_handle,
          learner_config=learner_config.SerializeToString(),
          apply_dropout=False,
          apply_averaging=False,
          center_bias=False,
          reduce_dim=True)

      self.assertAllEqual([[], []], dropout_info.eval())
      self.assertAllClose(result.eval(), result_no_dropout.eval())
开发者ID:SylChan,项目名称:tensorflow,代码行数:42,代码来源:prediction_ops_test.py


注:本文中的tensorflow.contrib.boosted_trees.python.ops.model_ops.tree_ensemble_variable函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。