当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.squared_difference函数代码示例

本文整理汇总了Python中tensorflow.squared_difference函数的典型用法代码示例。如果您正苦于以下问题:Python squared_difference函数的具体用法?Python squared_difference怎么用?Python squared_difference使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了squared_difference函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_cost_spacing

def create_cost_spacing(t, length, normalized = True):
  d = tf.sqrt(tf.reduce_sum(tf.square(t), reduction_indices = 1));
  if normalized:
    s = t.get_shape().as_list();
    return tf.reduce_mean(tf.squared_difference(d, tf.constant(length / s[0], "float32")));
  else:
    return tf.reduce_mean(tf.squared_difference(d, tf.constant(length, "float32")));
开发者ID:ChristophKirst,项目名称:CElegansBehaviour,代码行数:7,代码来源:machine_vision_d.py

示例2: mean_squared_error

def mean_squared_error(output, target, is_mean=False):
    """Return the TensorFlow expression of mean-squre-error of two distributions.

    Parameters
    ----------
    output : 2D or 4D tensor.
    target : 2D or 4D tensor.
    is_mean : boolean, if True, use ``tf.reduce_mean`` to compute the loss of one data, otherwise, use ``tf.reduce_sum`` (default).

    References
    ------------
    - `Wiki Mean Squared Error <https://en.wikipedia.org/wiki/Mean_squared_error>`_
    """
    with tf.name_scope("mean_squared_error_loss"):
        if output.get_shape().ndims == 2:   # [batch_size, n_feature]
            if is_mean:
                mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), 1))
            else:
                mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), 1))
        elif output.get_shape().ndims == 4: # [batch_size, w, h, c]
            if is_mean:
                mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), [1, 2, 3]))
            else:
                mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), [1, 2, 3]))
        return mse
开发者ID:johndpope,项目名称:LapSRN-tensorflow,代码行数:25,代码来源:cost.py

示例3: arg_closest_anchor

def arg_closest_anchor(bboxes, anchors):
  """Find the closest anchor. Box Format [ymin, xmin, ymax, xmax]
  """
  num_anchors = anchors.get_shape().as_list()[0]
  num_bboxes = tf.shape(bboxes)[0]

  _indices = tf.reshape(tf.range(num_bboxes), shape=[-1, 1])
  _indices = tf.reshape(tf.stack([_indices] * num_anchors, axis=1), shape=[-1, 1])
  bboxes_m = tf.gather_nd(bboxes, _indices)
  # bboxes_m = tf.Print(bboxes_m, [bboxes_m], "bboxes_m", summarize=100)

  anchors_m = tf.tile(anchors, [num_bboxes, 1])
  # anchors_m = tf.Print(anchors_m, [anchors_m], "anchors_m", summarize=100)

  square_dist = tf.squared_difference(bboxes_m[:, 0], anchors_m[:, 0]) + \
                tf.squared_difference(bboxes_m[:, 1], anchors_m[:, 1]) + \
                tf.squared_difference(bboxes_m[:, 2], anchors_m[:, 2]) + \
                tf.squared_difference(bboxes_m[:, 3], anchors_m[:, 3])

  square_dist = tf.reshape(square_dist, shape=[num_bboxes, num_anchors])

  # square_dist = tf.Print(square_dist, [square_dist], "square_dist", summarize=100)

  indices = tf.arg_min(square_dist, dimension=1)

  return indices
开发者ID:tigercut,项目名称:MobileNet,代码行数:26,代码来源:det_utils.py

示例4: LSGAN_losses

        def LSGAN_losses(real, fake):
            d_real = tf.reduce_mean(tf.squared_difference(real, 1), name='d_real')
            d_fake = tf.reduce_mean(tf.square(fake), name='d_fake')
            d_loss = tf.multiply(d_real + d_fake, 0.5, name='d_loss')

            g_loss = tf.reduce_mean(tf.squared_difference(fake, 1), name='g_loss')
            add_moving_summary(g_loss, d_loss)
            return g_loss, d_loss
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:8,代码来源:CycleGAN.py

示例5: __init__

    def __init__(self, sess, state, action, learning_rate, tau):
        self.sess = sess
        self.state_dim = len(state)
        self.action_dim = len(action)
        self.rate = learning_rate
        self.tau = tau

        # create critic network
        train_network = self.create_network('critic_train')
        self.inputs = train_network[0]
        self.actions = train_network[1]
        self.q_outputs = train_network[2]
        self.state_outputs = train_network[3]
        self.train_net = tf.get_collection(
            tf.GraphKeys.TRAINABLE_VARIABLES, scope=train_network[4]
        )

        # create target critic network
        target_network = self.create_network('critic_target')
        self.target_inputs = target_network[0]
        self.target_actions = target_network[1]
        self.target_q_outputs = target_network[2]
        self.target_state_outputs = target_network[3]
        self.target_net = tf.get_collection(
            tf.GraphKeys.TRAINABLE_VARIABLES, scope=target_network[4]
        )

        # op for updating target network with train network weights
        self.update = [self.target_net[i].assign(
            tf.mul(self.train_net[i], self.tau) +
            tf.mul(self.target_net[i], 1. - self.tau)
        )
            for i in range(len(self.target_net))]

        # define loss and optimization op
        self.state_prime = tf.placeholder(fl32, [None, self.state_dim])
        self.batch_state_loss = \
            tf.squared_difference(self.s_prime, self.state_outputs)
        self.state_loss = tf.reduce_mean(self.batch_state_loss)

        self.y = tf.placeholder(fl32, [None, 1])
        self.batch_q_loss = tf.squared_difference(self.y, self.q_outputs)
        self.q_loss = tf.reduce_mean(self.batch_loss)

        self.train_q = \
            tf.train.AdamOptimizer(self.rate).minimize(self.q_loss)
        self.train_state = \
            tf.train.AdamOptimizer(self.rate).minimize(self.state_loss)

        # get the gradient of the train net with respect to actions
        self.policy_gradient = tf.gradients(self.q_outputs, self.actions)
        self.explore_gradient = tf.gradients(self.state_loss, self.actions)

        # print total number of parameters (neurons)
        vars = self.train_net
        print sum([sum([reduce(
                lambda x, y: x * y, l.get_shape().as_list()) for l in e])
                for e in [vars]])
开发者ID:jpp46,项目名称:CurrentProjects,代码行数:58,代码来源:networks.py

示例6: build_model

 def build_model(self):    
     
     dense_masker01 = tf.sparse_tensor_to_dense(self.mask)
     dense_masker02 = tf.sparse_tensor_to_dense(self.mask1)
     dense_masker03 = tf.sparse_tensor_to_dense(self.mask2)
         
     with tf.name_scope('encoding'):
         encoding = tf.add(tf.sparse_tensor_dense_matmul(self.X, self.W) , self.b, name= 'raw_values')
         encoded_values = self.enc_func(encoding, name = 'encoded_values') - self.enc_func(self.b)  
         
         encoding1 = tf.add(tf.sparse_tensor_dense_matmul(self.X1, self.W) , self.b, name= 'raw_values1')
         encoded_values1 = self.enc_func(encoding1, name = 'encoded_values1') - self.enc_func(self.b)  
         
         encoding2 = tf.add(tf.sparse_tensor_dense_matmul(self.X2, self.W) , self.b, name= 'raw_values2')
         encoded_values2 = self.enc_func(encoding2, name = 'encoded_values2') - self.enc_func(self.b)  
 
         
     with tf.name_scope('decoding'):
         decoding =  tf.nn.xw_plus_b(encoded_values, self.W_prime, self.b_prime)
         decoded_values = self.dec_func(decoding, name = 'decoded_values')
         
         decoding1 =  tf.nn.xw_plus_b(encoded_values1, self.W_prime, self.b_prime)
         decoded_values1 = self.dec_func(decoding1, name = 'decoded_values1')
         
         decoding2 =  tf.nn.xw_plus_b(encoded_values2, self.W_prime, self.b_prime)
         decoded_values2 = self.dec_func(decoding2, name = 'decoded_values2')
         
         masked_decoded_values = tf.multiply(dense_masker01, decoded_values)
     
     with tf.name_scope('training_process'):
         diff01 = tf.squared_difference(tf.sparse_tensor_to_dense(self.Y) , decoded_values)  
         diff02 = tf.squared_difference(tf.sparse_tensor_to_dense(self.Y1) , decoded_values1)  
         diff03 = tf.squared_difference(tf.sparse_tensor_to_dense(self.Y2) , decoded_values2)
         L_R  = tf.reduce_sum( tf.multiply(dense_masker01, diff01)) \
             +  tf.reduce_sum( tf.multiply(dense_masker02, diff02)) \
             + tf.reduce_sum( tf.multiply(dense_masker03, diff03))
         
         L_T = tf.reduce_sum( tf.log(1+ tf.exp( tf.reduce_sum( tf.multiply(encoded_values, encoded_values2), 1) -  tf.reduce_sum(tf.multiply(encoded_values, encoded_values1),1))))
         
         error = L_R + self.alpha_enc * L_T
         
         reg = 0  
         for param in self.params.items():
             reg += tf.nn.l2_loss(param[1])* self.lambda_w
         loss = error + reg
         
     model_params = [p for p in self.params.values()]
        
     train_step = self._optimize(loss, model_params)
       
     tf.summary.scalar('error', error)
     tf.summary.scalar('loss', loss)        
     for param in self.params.items():
         tf.summary.histogram(param[0], param[1])        
     merged_summary = tf.summary.merge_all()                                   
         
     return encoded_values, decoded_values, masked_decoded_values, error, loss, train_step, merged_summary
开发者ID:WendyLNU,项目名称:rnn_recsys,代码行数:57,代码来源:CDAE.py

示例7: create_cost_spacing

def create_cost_spacing(self, c, length, normalized = True):
  c_shape = c.get_shape().as_list();
  c1 = tf.slice(c, [1,0], [-1,-1]);
  c2 = tf.slice(c, [0,0], [c_shape[0]-1,-1]);
  d = tf.sqrt(tf.reduce_sum(tf.squared_difference(c1,c2), reduction_indices = 1));
  if normalized:
    return tf.reduce_mean(tf.squared_difference(d, tf.constant(length / (c_shape[0]-1), "float32")));
  else:
    return tf.reduce_mean(tf.squared_difference(d, tf.constant(length, "float32")));
开发者ID:ChristophKirst,项目名称:CElegansBehaviour,代码行数:9,代码来源:test_boundary_optimization.py

示例8: TV_loss

def TV_loss(img,tv_weight):
	shape = tf.shape(img)  # the shape of the img is (1,H,W,C)
	img_row_before = tf.slice(img,[0,0,0,0],[-1,-1,shape[2]-1,-1])
	img_row_after = tf.slice(img,[0,0,1,0],[-1,-1,shape[2]-1,-1])
	img_col_before = tf.slice(img,[0,0,0,0],[-1,shape[1]-1,-1,-1])
	img_col_after = tf.slice(img,[0,1,0,0],[-1,shape[1]-1,-1,-1])
	tv_loss =  tv_weight*(tf.reduce_sum(tf.squared_difference(img_col_after,img_col_before))+\
			tf.reduce_sum(tf.squared_difference(img_row_after,img_row_before)))
	return tv_loss
开发者ID:haoqiangda,项目名称:2Neural-style,代码行数:9,代码来源:ns_layers.py

示例9: GMM_M_Step

def GMM_M_Step(X, Gama, ClusterNo, name='GMM_Statistics', **kwargs):

    D, h, s = tf.split(X, [1,1,1], axis=3)
    
    WXd = tf.multiply(Gama, tf.tile(D ,[1,1,1,ClusterNo]))
    WXa = tf.multiply(Gama, tf.tile(h ,[1,1,1,ClusterNo]))
    WXb = tf.multiply(Gama, tf.tile(s ,[1,1,1,ClusterNo]))
    
    S = tf.reduce_sum(tf.reduce_sum(Gama, axis=1), axis=1)
    S = tf.add(S, tf.contrib.keras.backend.epsilon())
    S = tf.reshape(S,[1, ClusterNo])
    
    M_d = tf.div(tf.reduce_sum(tf.reduce_sum(WXd, axis=1), axis=1) , S)
    M_a = tf.div(tf.reduce_sum(tf.reduce_sum(WXa, axis=1), axis=1) , S)
    M_b = tf.div(tf.reduce_sum(tf.reduce_sum(WXb, axis=1), axis=1) , S)
    
    Mu = tf.split(tf.concat([M_d, M_a, M_b],axis=0), ClusterNo, 1)  
    
    Norm_d = tf.squared_difference(D, tf.reshape(M_d,[1, ClusterNo]))
    Norm_h = tf.squared_difference(h, tf.reshape(M_a,[1, ClusterNo]))
    Norm_s = tf.squared_difference(s, tf.reshape(M_b,[1, ClusterNo]))
    
    WSd = tf.multiply(Gama, Norm_d)
    WSh = tf.multiply(Gama, Norm_h)
    WSs = tf.multiply(Gama, Norm_s)
    
    S_d = tf.sqrt(tf.div(tf.reduce_sum(tf.reduce_sum(WSd, axis=1), axis=1) , S))
    S_h = tf.sqrt(tf.div(tf.reduce_sum(tf.reduce_sum(WSh, axis=1), axis=1) , S))
    S_s = tf.sqrt(tf.div(tf.reduce_sum(tf.reduce_sum(WSs, axis=1), axis=1) , S))
    
    Std = tf.split(tf.concat([S_d, S_h, S_s],axis=0), ClusterNo, 1)  
    
    dist = list()
    for k in range(0, ClusterNo):
        dist.append(tf.contrib.distributions.MultivariateNormalDiag(tf.reshape(Mu[k],[1,3]), tf.reshape(Std[k],[1,3])))
    
    PI = tf.split(Gama, ClusterNo, axis=3) 
    Prob0 = list()
    for k in range(0, ClusterNo):
        Prob0.append(tf.multiply(tf.squeeze(dist[k].prob(X)), tf.squeeze(PI[k])))
        
    Prob = tf.convert_to_tensor(Prob0, dtype=tf.float32)    
    Prob = tf.minimum(tf.add(tf.reduce_sum(Prob, axis=0), tf.contrib.keras.backend.epsilon()), tf.constant(1.0, tf.float32))
    Log_Prob = tf.negative(tf.log(Prob))
    Log_Likelihood = tf.reduce_mean(Log_Prob)
    
    return Log_Likelihood, Mu, Std
        
开发者ID:FarhadZanjani,项目名称:Histopathology-Stain-Color-Normalization,代码行数:47,代码来源:GMM_M_Step.py

示例10: _get_cost

    def _get_cost(self, outputs):
        """Construct the cost function from the outputs of the last layer. This
        will be used through SGD to train the network.

        Parameters
        ----------
        outputs: tuple fo tensors (n_out)
            a tuple of tensor containing the output from the last layer of the
            network

        Returns
        -------
        cost: a tensor computing the cost function of the network.
        reg: a tensor for computing regularization of the parameters.
            It should be None if no regularization is needed.
        """
        Zk, X, lmbd = outputs

        with tf.name_scope("reconstruction_zD"):
            rec = tf.matmul(Zk, tf.constant(self.D))

        with tf.name_scope("norm_2"):
            Er = tf.multiply(
                tf.constant(.5, dtype=tf.float32),
                tf.reduce_mean(tf.reduce_sum(tf.squared_difference(rec, X),
                                             reduction_indices=[1])))

        with tf.name_scope("norm_1"):
            l1 = lmbd * tf.reduce_mean(tf.reduce_sum(
                tf.abs(Zk), reduction_indices=[1]))

        return tf.add(Er, l1, name="cost")
开发者ID:tomMoral,项目名称:AdaptiveOptim,代码行数:32,代码来源:lista_network.py

示例11: _compute_data_loss

 def _compute_data_loss(self):
     if self.hparams.loss == "cross_entropy_loss":
         data_loss = tf.reduce_mean(
             tf.nn.sigmoid_cross_entropy_with_logits(
                 logits=tf.reshape(self.logit, [-1]),
                 labels=tf.reshape(self.iterator.labels, [-1]),
             )
         )
     elif self.hparams.loss == "square_loss":
         data_loss = tf.sqrt(
             tf.reduce_mean(
                 tf.squared_difference(
                     tf.reshape(self.pred, [-1]),
                     tf.reshape(self.iterator.labels, [-1]),
                 )
             )
         )
     elif self.hparams.loss == "log_loss":
         data_loss = tf.reduce_mean(
             tf.losses.log_loss(
                 predictions=tf.reshape(self.pred, [-1]),
                 labels=tf.reshape(self.iterator.labels, [-1]),
             )
         )
     else:
         raise ValueError("this loss not defined {0}".format(self.hparams.loss))
     return data_loss
开发者ID:David-Li-L,项目名称:recommenders,代码行数:27,代码来源:base_model.py

示例12: _build_model

    def _build_model(self):
        # placeholders
        self.input = tf.placeholder(
            shape=[None, 84, 84, 4], dtype=tf.float32, name='inputs')
        self.actions = tf.placeholder(
            shape=[None], dtype=tf.int32, name='actions')
        self.next_input = tf.placeholder(
            shape=[None], dtype=tf.float32, name='next_inputs')

        qvals = []
        for i in range(self.k + 1):
            with tf.variable_scope('qnet-{}'.format(i)):
                qvals.append(self._net(self.input, i == 0))

        self.qvals = qvals[0]
        self.target_qvals = tf.stack(qvals[1:])

        trainable_variables = tf.trainable_variables('qnet-0/')
        batch_size = tf.shape(self.input)[0]
        gather_indices = tf.range(batch_size) * self.n_ac + self.actions
        action_q = tf.gather(tf.reshape(self.qvals, [-1]), gather_indices)
        self.loss = tf.reduce_mean(
            tf.squared_difference(self.next_input, action_q))
        self.max_qval = tf.reduce_max(self.qvals)

        self.train_op = self.optimizer.minimize(
            self.loss,
            global_step=tf.train.get_global_step(),
            var_list=trainable_variables)

        self.update_target_op = self._get_update_target_op()
开发者ID:liber145,项目名称:oh-my-q-learning,代码行数:31,代码来源:avedqn.py

示例13: _test_grads_images

    def _test_grads_images(self,
                           interpolation='linear',
                           boundary='replicate',
                           ndim=2):
        if ndim == 2:
            test_image, input_shape = get_multiple_2d_images()
            test_target, target_shape = get_multiple_2d_targets()
            identity_affine = [[1., 0., 0., 0., 1., 0.]] * 4
        else:
            test_image, input_shape = get_multiple_3d_images()
            test_target, target_shape = get_multiple_3d_targets()
            identity_affine = [[1., 0., 0., 0., 1., 0.,
                                1., 0., 0., 0., 1., 0.]] * 4
        affine_var = tf.get_variable('affine', initializer=identity_affine)
        grid = AffineGridWarperLayer(source_shape=input_shape[1:-1],
                                     output_shape=target_shape[1:-1],
                                     constraints=None)
        warp_coords = grid(affine_var)
        resampler = ResamplerLayer(interpolation, boundary=boundary)
        new_image = resampler(tf.constant(test_image, dtype=tf.float32),
                              warp_coords)

        diff = tf.reduce_mean(tf.squared_difference(
            new_image, tf.constant(test_target, dtype=tf.float32)))
        optimiser = tf.train.AdagradOptimizer(0.01)
        grads = optimiser.compute_gradients(diff)
        opt = optimiser.apply_gradients(grads)
        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            init_val, affine_val = sess.run([diff, affine_var])
            for _ in range(5):
                _, diff_val, affine_val = sess.run([opt, diff, affine_var])
                print('{}, {}'.format(diff_val, affine_val[0]))
            self.assertGreater(init_val, diff_val)
开发者ID:fepegar,项目名称:NiftyNet,代码行数:34,代码来源:resampler_grid_warper_test.py

示例14: drawGraph

    def drawGraph(self, n_row, n_latent, n_col):
        with tf.name_scope('matDecomp'):
            self._p = tf.placeholder(tf.float32, shape=[None, n_col])
            self._c = tf.placeholder(tf.float32, shape=[None, n_col])
            self._lambda = tf.placeholder(tf.float32)
            self._index = tf.placeholder(tf.float32, shape=[None, n_row])
            self._A = tf.Variable(tf.truncated_normal([n_row, n_latent]))
            self._B = tf.Variable(tf.truncated_normal([n_latent, n_col]))
            self._h = tf.matmul(tf.matmul(self._index, self._A), self._B) 
            
            weighted_loss = tf.reduce_mean(tf.mul(self._c, tf.squared_difference(self._p, self._h)))
            self._weighted_loss = weighted_loss
            l2_A = tf.reduce_sum(tf.square(self._A))
            l2_B = tf.reduce_sum(tf.square(self._B))
            n_w = tf.constant(n_row * n_latent + n_latent * n_col, tf.float32)
            l2 = tf.truediv(tf.add(l2_A, l2_B), n_w)
            reg_term = tf.mul(self._lambda, l2)
            self._loss = tf.add(weighted_loss, reg_term)
            
            self._mask = tf.placeholder(tf.float32, shape=[n_row, n_col])
            one = tf.constant(1, tf.float32)
            pred = tf.cast(tf.greater_equal(tf.matmul(self._A, self._B), one), tf.float32)
            cor = tf.mul(tf.cast(tf.equal(pred, self._p), tf.float32), self._c)
            self._vali_err = tf.reduce_sum(tf.mul(cor, self._mask))

            self._saver = tf.train.Saver([v for v in tf.all_variables() if v.name.find('matDecomp') != -1])
            tf.scalar_summary('training_weighted_loss_l2', self._loss)
            tf.scalar_summary('validation_weighted_loss', self._weighted_loss)
            merged = tf.merge_all_summaries()
开发者ID:cning,项目名称:ehc,代码行数:29,代码来源:model.py

示例15: _apply

  def _apply(self, grad, var, indices=None):
    lr = tf.cast(self._learning_rate_tensor, var.dtype.base_dtype)
    m = self.get_slot(var, "m")
    v = self.get_slot(var, "v")
    beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype)
    beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)
    epsilon_t = tf.cast(self._epsilon_t, var.dtype.base_dtype)

    # m_t = beta1 * m + (1 - beta1) * g_t
    m_scaled_g_values = grad * (1 - beta1_t)
    m_t = tf.assign(m, m * beta1_t, use_locking=self._use_locking)
    with tf.control_dependencies([m_t]):
      m_t = self._assign_add(m, updates=m_scaled_g_values, indices=indices)
    m_gathered = self._gather(m_t, indices=indices)

    # Also see tf.nn.moments.
    variance = tf.squared_difference(grad, m_gathered)

    # v_t = beta2 * v + (1 - beta2) * variance
    v_scaled_new_values = variance * (1 - beta2_t)
    v_t = tf.assign(v, v * beta2_t, use_locking=self._use_locking)
    with tf.control_dependencies([v_t]):
      v_t = self._assign_add(v, updates=v_scaled_new_values, indices=indices)
    v_gathered = self._gather(v_t, indices=indices)

    factor = v_gathered / (variance + epsilon_t)
    update = lr * grad * tf.minimum(factor, 1.0)
    var_update = self._assign_sub(ref=var, updates=update, indices=indices)
    return tf.group(*[var_update, m_t])
开发者ID:rwth-i6,项目名称:returnn,代码行数:29,代码来源:TFUpdater.py


注:本文中的tensorflow.squared_difference函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。