当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.sin函数代码示例

本文整理汇总了Python中tensorflow.sin函数的典型用法代码示例。如果您正苦于以下问题:Python sin函数的具体用法?Python sin怎么用?Python sin使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了sin函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_filters

def get_filters(R, filter_size, P=None, n_rings=None):
    """Perform single-frequency DFT on each ring of a polar-resampled patch"""
    k = filter_size
    filters = {}
    N = n_samples(k)
    from scipy.linalg import dft
    for m, r in R.iteritems():
        rsh = r.get_shape().as_list()
        # Get the basis matrices
        weights = get_interpolation_weights(k, m, n_rings=n_rings)
        DFT = dft(N)[m,:]
        LPF = np.dot(DFT, weights).T

        cosine = np.real(LPF).astype(np.float32)
        sine = np.imag(LPF).astype(np.float32)
        # Reshape for multiplication with radial profile
        cosine = tf.constant(cosine)
        sine = tf.constant(sine)
        # Project taps on to rotational basis
        r = tf.reshape(r, tf.stack([rsh[0],rsh[1]*rsh[2]]))
        ucos = tf.reshape(tf.matmul(cosine, r), tf.stack([k, k, rsh[1], rsh[2]]))
        usin = tf.reshape(tf.matmul(sine, r), tf.stack([k, k, rsh[1], rsh[2]]))
        if P is not None:
            # Rotate basis matrices
            ucos_ = tf.cos(P[m])*ucos + tf.sin(P[m])*usin
            usin = -tf.sin(P[m])*ucos + tf.cos(P[m])*usin
            ucos = ucos_
        filters[m] = (ucos, usin)
    return filters
开发者ID:deworrall92,项目名称:groupConvolutions,代码行数:29,代码来源:harmonic_network_ops.py

示例2: tl_net

    def tl_net(self, inputs):


        layer = self.genes[0][:,0]*tf.sin(0.01*inputs+self.genes[0][:,1])
        for i in range(1, jishu):
            layer = tf.add(layer, self.genes[i][:,0]*tf.sin(0.01*i+0.01*inputs+self.genes[i][:,1]))

        return layer
开发者ID:chengyake,项目名称:karch,代码行数:8,代码来源:sin_function_iter.py

示例3: call

    def call(self, inputs):
        k1 = tf.matmul(tf.cos(inputs), self.k1 * tf.cos(self.mu))
        k2 = tf.matmul(tf.sin(inputs), self.k2 * tf.sin(self.mu))

        # Defines the two model formulations: "glm" vs "gvm".
        if self.model_type == 'glm':
            return tf.exp(k1 + k2 + self.k0)
        else:
            return tf.nn.softplus(self.b) + self.g * tf.exp(k1 + k2)
开发者ID:KordingLab,项目名称:spykes,代码行数:9,代码来源:poisson_models.py

示例4: _J

 def _J(self, theta):
     """
     Implements the order dependent family of functions defined in equations
     4 to 7 in the reference paper.
     """
     if self.order == 0:
         return np.pi - theta
     elif self.order == 1:
         return tf.sin(theta) + (np.pi - theta) * tf.cos(theta)
     elif self.order == 2:
         return 3. * tf.sin(theta) * tf.cos(theta) + \
                (np.pi - theta) * (1. + 2. * tf.cos(theta) ** 2)
开发者ID:vincentadam87,项目名称:GPflow,代码行数:12,代码来源:kernels.py

示例5: tl_net

    def tl_net(self, inputs):
        for i in range(jishu):
            if i < 8:
                self.arg[i]=tf.Variable(tf.random_normal((self.data.num_input,2)), trainable=True)
            else:
                self.arg[i]=tf.Variable(tf.zeros((self.data.num_input,2)), trainable=False)


        layer = self.arg[0][:,0]*tf.sin(0.1*inputs+self.arg[0][:,1])
        for i in range(1, jishu):
            layer = tf.add(layer, self.arg[i][:,0]*tf.sin((0.1*i+0.1)*inputs+self.arg[i][:,1]))
        return layer
开发者ID:chengyake,项目名称:karch,代码行数:12,代码来源:tljs_function.py

示例6: _euler2mat

def _euler2mat(z, y, x):
  """Converts euler angles to rotation matrix.

   From:
   https://github.com/pulkitag/pycaffe-utils/blob/master/rot_utils.py#L174

   TODO: Remove the dimension for 'N' (deprecated for converting all source
   poses altogether).

  Args:
    z: rotation angle along z axis (in radians) -- size = [B, n]
    y: rotation angle along y axis (in radians) -- size = [B, n]
    x: rotation angle along x axis (in radians) -- size = [B, n]

  Returns:
    Rotation matrix corresponding to the euler angles, with shape [B, n, 3, 3].
  """
  batch_size = tf.shape(z)[0]
  n = 1
  z = tf.clip_by_value(z, -np.pi, np.pi)
  y = tf.clip_by_value(y, -np.pi, np.pi)
  x = tf.clip_by_value(x, -np.pi, np.pi)

  # Expand to B x N x 1 x 1
  z = tf.expand_dims(tf.expand_dims(z, -1), -1)
  y = tf.expand_dims(tf.expand_dims(y, -1), -1)
  x = tf.expand_dims(tf.expand_dims(x, -1), -1)

  zeros = tf.zeros([batch_size, n, 1, 1])
  ones = tf.ones([batch_size, n, 1, 1])

  cosz = tf.cos(z)
  sinz = tf.sin(z)
  rotz_1 = tf.concat([cosz, -sinz, zeros], axis=3)
  rotz_2 = tf.concat([sinz, cosz, zeros], axis=3)
  rotz_3 = tf.concat([zeros, zeros, ones], axis=3)
  zmat = tf.concat([rotz_1, rotz_2, rotz_3], axis=2)

  cosy = tf.cos(y)
  siny = tf.sin(y)
  roty_1 = tf.concat([cosy, zeros, siny], axis=3)
  roty_2 = tf.concat([zeros, ones, zeros], axis=3)
  roty_3 = tf.concat([-siny, zeros, cosy], axis=3)
  ymat = tf.concat([roty_1, roty_2, roty_3], axis=2)

  cosx = tf.cos(x)
  sinx = tf.sin(x)
  rotx_1 = tf.concat([ones, zeros, zeros], axis=3)
  rotx_2 = tf.concat([zeros, cosx, -sinx], axis=3)
  rotx_3 = tf.concat([zeros, sinx, cosx], axis=3)
  xmat = tf.concat([rotx_1, rotx_2, rotx_3], axis=2)

  return tf.matmul(tf.matmul(xmat, ymat), zmat)
开发者ID:pcm17,项目名称:models,代码行数:53,代码来源:project.py

示例7: test_cwise_unary_grad

    def test_cwise_unary_grad(self):
        """
        Ensure that all component-wise unary functions in the math op library yield an identical gradient to tensorflow
        """
        test_config = tf.ConfigProto(allow_soft_placement=False)
        test_config.graph_options.optimizer_options.opt_level = -1
        with tf.Session(config=test_config) as s:
            arg_np = np.random.random(100)
            grad_above = tf.constant(np.random.random(100))

            arg = tf.constant(arg_np)

            def test_grad(fcn, tf_fcn):
                ovl_out = as_tensorflow(fcn(arg))
                tf_out = tf_fcn(arg)

                ovl_grad = tf.gradients(ovl_out, arg, grad_above)[0]
                tf_grad = tf.gradients(tf_out, arg, grad_above)[0]
                ovl_out, tf_out, ovl_grad, tf_grad = s.run([ovl_out, tf_out, ovl_grad, tf_grad])

                assert np.allclose(ovl_out, tf_out)
                assert np.allclose(ovl_grad, tf_grad)

            test_grad(lambda x: neg(x), lambda x: tf.neg(x))
            test_grad(lambda x: tanh(x), lambda x: tf.tanh(x))
            test_grad(lambda x: sin(x), lambda x: tf.sin(x))
            test_grad(lambda x: cos(x), lambda x: tf.cos(x))
            test_grad(lambda x: tan(x), lambda x: tf.tan(x))
            test_grad(lambda x: sigmoid(x), lambda x: tf.sigmoid(x))
开发者ID:hewlettpackardlabs,项目名称:opveclib,代码行数:29,代码来源:test_math.py

示例8: testVonMisesSampleMoments

  def testVonMisesSampleMoments(self):
    locs_v = np.array([-2., -1., 0.3, 2.3])
    concentrations_v = np.array([0.1, 1.0, 2.0, 10.0])
    von_mises = tfd.VonMises(
        self.make_tensor(locs_v), self.make_tensor(concentrations_v))

    n = 10000
    samples = von_mises.sample(n, seed=12345)

    expected_mean = von_mises.mean()
    actual_mean = tf.atan2(
        tf.reduce_mean(tf.sin(samples), 0), tf.reduce_mean(tf.cos(samples), 0))

    expected_variance = von_mises.variance()
    standardized_samples = samples - tf.expand_dims(von_mises.mean(), 0)
    actual_variance = 1. - tf.reduce_mean(tf.cos(standardized_samples), axis=0)

    [
        expected_mean_val, expected_variance_val, actual_mean_val,
        actual_variance_val
    ] = self.evaluate(
        [expected_mean, expected_variance, actual_mean, actual_variance])

    self.assertAllClose(expected_mean_val, actual_mean_val, rtol=0.1)
    self.assertAllClose(expected_variance_val, actual_variance_val, rtol=0.1)
开发者ID:asudomoeva,项目名称:probability,代码行数:25,代码来源:von_mises_test.py

示例9: __init__

    def __init__(self, args):
        with tf.device(args.device):
            def circle(x):
                spherenet = tf.square(x)
                spherenet = tf.reduce_sum(spherenet, 1)
                lam = tf.sqrt(spherenet)
                return x/tf.reshape(lam,[int(lam.get_shape()[0]), 1])

            def modes(x):
                shape = x.get_shape()
                return tf.round(x*2)/2.0#+tf.random_normal(shape, 0, 0.04)

            if args.distribution == 'circle':
                x = tf.random_normal([args.batch_size, 2])
                x = circle(x)
            elif args.distribution == 'modes':
                x = tf.random_uniform([args.batch_size, 2], -1, 1)
                x = modes(x)
            elif args.distribution == 'modal-gaussian':
                x = tf.random_uniform([args.batch_size, 2], -1, 1)
                y = tf.random_normal([args.batch_size, 2], stddev=0.04, mean=0.15)
                x = tf.round(x) + y
            elif args.distribution == 'sin':
                x = tf.random_uniform((1, args.batch_size), -10.5, 10.5 )
                x = tf.transpose(x)
                r_data = tf.random_normal((args.batch_size,1), mean=0, stddev=0.1)
                xy = tf.sin(0.75*x)*7.0+x*0.5+r_data*1.0
                x = tf.concat([xy,x], 1)/16.0

            elif args.distribution == 'static-point':
                x = tf.ones([args.batch_size, 2])

            self.x = x
            self.xy = tf.zeros_like(self.x)
开发者ID:255BITS,项目名称:hyperchamber-gan,代码行数:34,代码来源:2d-distribution.py

示例10: get_box3d_corners_helper

def get_box3d_corners_helper(centers, headings, sizes):
    """ TF layer. Input: (N,3), (N,), (N,3), Output: (N,8,3) """
    #print '-----', centers
    N = centers.get_shape()[0].value
    l = tf.slice(sizes, [0,0], [-1,1]) # (N,1)
    w = tf.slice(sizes, [0,1], [-1,1]) # (N,1)
    h = tf.slice(sizes, [0,2], [-1,1]) # (N,1)
    #print l,w,h
    x_corners = tf.concat([l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2], axis=1) # (N,8)
    y_corners = tf.concat([h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2], axis=1) # (N,8)
    z_corners = tf.concat([w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2], axis=1) # (N,8)
    corners = tf.concat([tf.expand_dims(x_corners,1), tf.expand_dims(y_corners,1), tf.expand_dims(z_corners,1)], axis=1) # (N,3,8)
    #print x_corners, y_corners, z_corners
    c = tf.cos(headings)
    s = tf.sin(headings)
    ones = tf.ones([N], dtype=tf.float32)
    zeros = tf.zeros([N], dtype=tf.float32)
    row1 = tf.stack([c,zeros,s], axis=1) # (N,3)
    row2 = tf.stack([zeros,ones,zeros], axis=1)
    row3 = tf.stack([-s,zeros,c], axis=1)
    R = tf.concat([tf.expand_dims(row1,1), tf.expand_dims(row2,1), tf.expand_dims(row3,1)], axis=1) # (N,3,3)
    #print row1, row2, row3, R, N
    corners_3d = tf.matmul(R, corners) # (N,3,8)
    corners_3d += tf.tile(tf.expand_dims(centers,2), [1,1,8]) # (N,3,8)
    corners_3d = tf.transpose(corners_3d, perm=[0,2,1]) # (N,8,3)
    return corners_3d
开发者ID:donrv,项目名称:frustum-pointnets,代码行数:26,代码来源:model_util.py

示例11: get_position_encoding

def get_position_encoding(
    length, hidden_size, min_timescale=1.0, max_timescale=1.0e4):
  """Return positional encoding.

  Calculates the position encoding as a mix of sine and cosine functions with
  geometrically increasing wavelengths.
  Defined and formulized in Attention is All You Need, section 3.5.

  Args:
    length: Sequence length.
    hidden_size: Size of the
    min_timescale: Minimum scale that will be applied at each position
    max_timescale: Maximum scale that will be applied at each position

  Returns:
    Tensor with shape [length, hidden_size]
  """
  position = tf.to_float(tf.range(length))
  num_timescales = hidden_size // 2
  log_timescale_increment = (
      math.log(float(max_timescale) / float(min_timescale)) /
      (tf.to_float(num_timescales) - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)
  signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
  return signal
开发者ID:812864539,项目名称:models,代码行数:27,代码来源:model_utils.py

示例12: tf_cheating_contcartpole

def tf_cheating_contcartpole(state, action):
    gravity = 9.8
    masscart = 1.0
    masspole = 0.1
    total_mass = (masspole + masscart)
    length = 0.5 # actually half the pole's length
    polemass_length = (masspole * length)
    force_mag = 10.0
    tau = 0.02  # seconds between state updates

    # Angle at which to fail the episode
    theta_threshold_radians = 12 * 2 * math.pi / 360
    x_threshold = 2.4

    x, x_dot, theta, theta_dot = tf.split(state, 4, axis=-1)
    done =  tf.logical_or(x < -x_threshold,
                          tf.logical_or(x > x_threshold,
                          tf.logical_or(theta < -theta_threshold_radians,
                                        theta > theta_threshold_radians)))

    force = force_mag * action
    costheta = tf.cos(theta)
    sintheta = tf.sin(theta)
    temp = old_div((force + polemass_length * theta_dot * theta_dot * sintheta), total_mass)
    thetaacc = old_div((gravity * sintheta - costheta* temp), (length * (old_div(4.0,3.0) - masspole * costheta * costheta / total_mass)))
    xacc  = temp - polemass_length * thetaacc * costheta / total_mass
    x  = x + tau * x_dot
    x_dot = x_dot + tau * xacc
    theta = theta + tau * theta_dot
    theta_dot = theta_dot + tau * thetaacc
    state = tf.concat([x,x_dot,theta,theta_dot], -1)
    done = tf.squeeze(tf.cast(done, tf.float32), -1)
    reward = 1.0 - done
    done *= 0.
    return state, reward, done
开发者ID:ALISCIFP,项目名称:models,代码行数:35,代码来源:util.py

示例13: phigrad

def phigrad(X, omegas, D):
    Z = tf.matmul(X, omegas)
    Zc = tf.cos(Z)
    Zs = tf.sin(Z)
    phiX = tf.concat([Zc, Zs], 1) / np.sqrt(D)
    phiXg = tf.concat([-omegas * Zs, omegas * Zc], 1) / np.sqrt(D)
    return phiX, phiXg
开发者ID:RomainBrault,项目名称:Thesis,代码行数:7,代码来源:quantile.py

示例14: bisine_wahwah_wave

def bisine_wahwah_wave(frequency):
  """Emit two sine waves with balance oscillating left and right."""
  #
  # This is clearly intended to build on the bisine wave defined above,
  # so we can start by generating that.
  waves_a = bisine_wave(frequency)
  #
  # Then, by reversing axis 2, we swap the stereo channels. By mixing
  # this with `waves_a`, we'll be able to create the desired effect.
  waves_b = tf.reverse(waves_a, axis=[2])
  #
  # Let's have the balance oscillate from left to right four times.
  iterations = 4
  #
  # Now, we compute the balance for each sample: `ts` has values
  # in [0, 1] that indicate how much we should use `waves_a`.
  xs = tf.reshape(tf.range(_samples(), dtype=tf.float32), [1, _samples(), 1])
  thetas = xs / _samples() * iterations
  ts = (tf.sin(math.pi * 2 * thetas) + 1) / 2
  #
  # Finally, we can mix the two together, and we're done.
  wave = ts * waves_a + (1.0 - ts) * waves_b
  #
  # Alternately, we can make the effect more pronounced by exaggerating
  # the sample data. Let's emit both variations.
  exaggerated_wave = wave ** 3.0
  return tf.concat([wave, exaggerated_wave], axis=0)
开发者ID:jlewi,项目名称:tensorboard,代码行数:27,代码来源:audio_demo.py

示例15: gabor

def gabor(n_values=32, sigma=1.0, mean=0.0):
	x = tf.linspace(-3.0, 3.0, n_values)
	z = (tf.exp(tf.negative(tf.pow(x - mean, 2.0)/ (2.0 * tf.pow(sigma, 2.0)))) * (1.0 / (sigma * tf.sqrt(2.0 * 3.145))))
	gauss_kernel = tf.matmul(tf.reshape(z, [n_values, 1]), tf.reshape(z,[1, n_values]))
	x = tf.reshape(tf.sin(tf.linspace(-3.0, 3.0, n_values)), [n_values, 1])
	y = tf.reshape(tf.ones_like(x), [1, n_values])
	gabor_kernel = tf.multiply(tf.matmul(x ,y), gauss_kernel)
	return gabor_kernel
开发者ID:stonecoder19,项目名称:machine_learning,代码行数:8,代码来源:basics_tensor.py


注:本文中的tensorflow.sin函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。