当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.reshape函数代码示例

本文整理汇总了Python中tensorflow.reshape函数的典型用法代码示例。如果您正苦于以下问题:Python reshape函数的具体用法?Python reshape怎么用?Python reshape使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了reshape函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: project_bilstm_layer

    def project_bilstm_layer(self, lstm_outputs, name=None):
        """
        hidden layer between lstm layer and logits
        :param lstm_outputs: [batch_size, num_steps, emb_size] 
        :return: [batch_size, num_steps, num_tags]
        """
        with tf.variable_scope("project" if not name else name):
            with tf.variable_scope("hidden"):
                W = tf.get_variable("W", shape=[self.hidden_unit * 2, self.hidden_unit],
                                    dtype=tf.float32, initializer=self.initializers.xavier_initializer())

                b = tf.get_variable("b", shape=[self.hidden_unit], dtype=tf.float32,
                                    initializer=tf.zeros_initializer())
                output = tf.reshape(lstm_outputs, shape=[-1, self.hidden_unit * 2])
                hidden = tf.tanh(tf.nn.xw_plus_b(output, W, b))

            # project to score of tags
            with tf.variable_scope("logits"):
                W = tf.get_variable("W", shape=[self.hidden_unit, self.num_labels],
                                    dtype=tf.float32, initializer=self.initializers.xavier_initializer())

                b = tf.get_variable("b", shape=[self.num_labels], dtype=tf.float32,
                                    initializer=tf.zeros_initializer())

                pred = tf.nn.xw_plus_b(hidden, W, b)
            return tf.reshape(pred, [-1, self.seq_length, self.num_labels])
开发者ID:chongp,项目名称:Name-Entity-Recognition,代码行数:26,代码来源:lstm_crf_layer.py

示例2: iris_input_fn

def iris_input_fn(num_epochs=None):
  iris = tf.contrib.learn.datasets.load_iris()
  features = tf.reshape(tf.constant(iris.data), [-1, 4])
  if num_epochs:
    features = tf.train.limit_epochs(features, num_epochs=num_epochs)
  target = tf.reshape(tf.constant(iris.target), [-1])
  return features, target
开发者ID:apollos,项目名称:tensorflow,代码行数:7,代码来源:classifier_test.py

示例3: make_net

 def make_net(self, input_images, input_measurements, input_actions, input_objectives, reuse=False):
     if reuse:
         tf.get_variable_scope().reuse_variables()
     
     self.fc_val_params = np.copy(self.fc_joint_params)
     self.fc_val_params['out_dims'][-1] = self.target_dim
     self.fc_adv_params = np.copy(self.fc_joint_params)
     self.fc_adv_params['out_dims'][-1] = len(self.net_discrete_actions) * self.target_dim
     p_img_conv = my_ops.conv_encoder(input_images, self.conv_params, 'p_img_conv', msra_coeff=0.9)
     p_img_fc = my_ops.fc_net(my_ops.flatten(p_img_conv), self.fc_img_params, 'p_img_fc', msra_coeff=0.9)
     p_meas_fc = my_ops.fc_net(input_measurements, self.fc_meas_params, 'p_meas_fc', msra_coeff=0.9)
     if isinstance(self.fc_obj_params, np.ndarray):
         p_obj_fc = my_ops.fc_net(input_objectives, self.fc_obj_params, 'p_obj_fc', msra_coeff=0.9)
         p_concat_fc = tf.concat([p_img_fc,p_meas_fc,p_obj_fc], 1)
     else:
         p_concat_fc = tf.concat([p_img_fc,p_meas_fc], 1)
         if self.random_objective_coeffs:
             raise Exception('Need fc_obj_params with randomized objectives')
         
     p_val_fc = my_ops.fc_net(p_concat_fc, self.fc_val_params, 'p_val_fc', last_linear=True, msra_coeff=0.9)
     p_adv_fc = my_ops.fc_net(p_concat_fc, self.fc_adv_params, 'p_adv_fc', last_linear=True, msra_coeff=0.9)
     
     adv_reshape = tf.reshape(p_adv_fc, [-1, len(self.net_discrete_actions), self.target_dim])
     
     pred_all_nomean = adv_reshape - tf.reduce_mean(adv_reshape, reduction_indices=1, keep_dims=True)
     pred_all = pred_all_nomean + tf.reshape(p_val_fc, [-1, 1, self.target_dim])
     pred_relevant = tf.boolean_mask(pred_all, tf.cast(input_actions, tf.bool))
     
     return pred_all, pred_relevant
开发者ID:johny-c,项目名称:DirectFuturePrediction,代码行数:29,代码来源:future_predictor_agent_advantage.py

示例4: one_minus_pseudo_unitcell_transfer_op

def one_minus_pseudo_unitcell_transfer_op(direction, mps, left_dominant,
                                          right_dominant, vector):
    """
    calculates action of 11-Transfer-Operator +|r)(l|
    Parameters:
    ---------------------------
    direction:  int or str 
                if (1,'l','left'): do left multiplication
                if (-1,'r','right'): do right multiplication
    mps:        InfiniteMPSCentralGauge object
                an infinite mps
    left_dominant:  tf.tensor of shape (mps.D[0],mps.D[0])
                    left dominant eigenvector of the unit-cell transfer operator of mps
    right_dominant: tf.tensor of shape (mps.D[-1],mps.D[-1])
                    right dominant eigenvector of the unit-cell transfer operator of mps
    vector:         tf.tensor of shape (mps.D[0]*mps.D[0]) or (mps.D[-1]*mps.D[-1])
                    the input vector
    Returns
    ---------------------------
    np.ndarray of shape (mps.D[0]*mps.D[0]) or (mps.D[-1]*mps.D[-1])

    """

    if direction in (1, 'l', 'left'):
        x = tf.reshape(tf.convert_to_tensor(vector), (mps.D[0], mps.D[0]))
        temp = x - mps.unitcell_transfer_op('left', x) + ncon(
            [x, right_dominant], [[1, 2], [1, 2]]) * left_dominant
        return tf.reshape(temp, [mps.D[-1] * mps.D[-1]]).numpy()

    if direction in (-1, 'r', 'right'):
        x = tf.reshape(tf.convert_to_tensor(vector), [mps.D[-1], mps.D[-1]])
        temp = x - mps.unitcell_transfer_op('right', x) + ncon(
            [left_dominant, x], [[1, 2], [1, 2]]) * right_dominant
        return tf.reshape(temp, [mps.D[0] * mps.D[0]]).numpy()
开发者ID:zoltanegyed,项目名称:TensorNetwork,代码行数:34,代码来源:misc_mps.py

示例5: create_output

def create_output(decoder_output, rows, cols, targets, hparams):
  """Creates output from decoder output and vars.

  Args:
    decoder_output: Tensor of shape [batch, ...], where ... can be any rank such
      that the number of elements is batch * rows * cols * hparams.hidden_size.
    rows: Integer representing number of rows in a 2-D data point.
    cols: Integer representing number of columns in a 2-D data point.
    targets: Tensor of shape [batch, hparams.img_len, hparams.img_len,
      hparams.num_channels].
    hparams: tf.contrib.training.HParams set.

  Returns:
    Tensor of shape [batch, hparams.img_len, hparams.img_len,
    hparams.num_mixtures * 10] if hparams.likelihood is DMOL, otherwise
    [batch, hparams.img_len, hparams.img_len, hparams.num_channels, 256].
    In the special case of predict mode, it is a Tensor of rank 5.
  """
  decoded_image = postprocess_image(decoder_output, rows, cols, hparams)
  depth = common_layers.shape_list(decoded_image)[-1]
  batch, height, width, channels = common_layers.shape_list(targets)
  likelihood = getattr(hparams, "likelihood", DistributionType.CAT)
  if hparams.mode == tf.estimator.ModeKeys.PREDICT:
    y = tf.reshape(decoded_image, [batch, -1, 1, 1, depth])
    output = y[:, :height, :, :, :]
  elif likelihood == DistributionType.CAT:
    # Unpack the cols dimension of the Categorical.
    output = tf.reshape(decoded_image,
                        [batch, height, width, channels, depth])
  else:
    output = decoded_image
  return output
开发者ID:kltony,项目名称:tensor2tensor,代码行数:32,代码来源:common_image_attention.py

示例6: SoftThreshold

def SoftThreshold(t, threshold_ratio, name=None):
  """Soft-threshold a tensor by the mean value.

  Softthreshold each dimension-0 vector (for matrix it is each column) by
  the mean of absolute value multiplied by the threshold_ratio factor. Here
  we soft threshold each column as it corresponds to each unit in a layer.

  Args:
    t: the input tensor.
    threshold_ratio: the threshold ratio.
    name: the optional name for the returned tensor.
  Returns:
    the thresholded tensor, where each entry is soft-thresholded by
    threshold_ratio times the mean of the aboslute value of each column.
  """

  assert threshold_ratio >= 0
  with tf.op_scope([t, threshold_ratio], name, "soft_thresholding") as name:
    saved_shape = tf.shape(t)
    t2 = tf.reshape(t, tf.concat(0, [tf.slice(saved_shape, [0], [1]), -1]))
    t_abs = tf.abs(t2)
    t_x = tf.sign(t2) * tf.nn.relu(t_abs -
                                   (tf.reduce_mean(t_abs, [0],
                                                   keep_dims=True) *
                                    threshold_ratio))
    return tf.reshape(t_x, saved_shape, name=name)
开发者ID:Peratham,项目名称:models,代码行数:26,代码来源:utils.py

示例7: forward_propagation

def forward_propagation(images):
  with tf.variable_scope('conv1') as scope:
      W_conv1 = weight_variable([5, 5, 3, 32])
      b_conv1 = bias_variable([32])
      image_matrix = tf.reshape(images, [-1, 1750, 1750, 3])
      h_conv1 = tf.nn.sigmoid(conv2d(image_matrix, W_conv1) + b_conv1)
      _activation_summary(h_conv1)
      h_pool1 = max_pool_5x5(h_conv1)

  with tf.variable_scope('conv2') as scope:
      W_conv2 = weight_variable([5, 5, 32, 64])
      b_conv2 = bias_variable([64])
      h_conv2 = tf.nn.sigmoid(conv2d(h_pool1, W_conv2) + b_conv2)
      _activation_summary(h_conv2)
      h_pool2 = max_pool_5x5(h_conv2)

  with tf.variable_scope('conv3') as scope:
      W_conv3 = weight_variable([5, 5, 64, 128])
      b_conv3 = bias_variable([128])
      h_conv3 = tf.nn.sigmoid(conv2d(h_pool2, W_conv3) + b_conv3)
      _activation_summary(h_conv3)
      h_pool3 = max_pool_5x5(h_conv3)

  with tf.variable_scope('local3') as scope:
      W_fc1 = weight_variable([14 * 14 * 128, 256])
      b_fc1 = bias_variable([256])
      h_pool3_flat = tf.reshape(h_pool3, [-1, 14 * 14 * 128])
      h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool3_flat, W_fc1) + b_fc1)
      _activation_summary(h_fc1)
      keep_prob = tf.Variable(1.0)
      W_fc2 = weight_variable([256, 4])
      b_fc2 = bias_variable([4])
      y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
      _activation_summary(y_conv)
      return y_conv
开发者ID:StructML,项目名称:Neural-Network-Prostate,代码行数:35,代码来源:Process.py

示例8: buildSpImageConverter

def buildSpImageConverter(channelOrder, img_dtype):
    """
    Convert a imageIO byte encoded image into a image tensor suitable as input to ConvNets
    The name of the input must be a subset of those specified in `image.imageIO.imageSchema`.

    :param img_dtype: the type of data the underlying image bytes represent
    """
    with IsolatedSession() as issn:
        # Flat image data -> image dimensions
        # This has to conform to `imageIO.imageSchema`
        height = tf.placeholder(tf.int32, [], name="height")
        width = tf.placeholder(tf.int32, [], name="width")
        num_channels = tf.placeholder(tf.int32, [], name="nChannels")
        image_buffer = tf.placeholder(tf.string, [], name="data")

        # The image is packed into bytes with height as leading dimension
        # This is the default behavior of Python Image Library
        shape = tf.reshape(tf.stack([height, width, num_channels], axis=0),
                           shape=(3,), name='shape')
        if img_dtype == 'uint8':
            image_uint8 = tf.decode_raw(image_buffer, tf.uint8, name="decode_raw")
            image_float = tf.to_float(image_uint8)
        elif img_dtype == 'float32':
            image_float = tf.decode_raw(image_buffer, tf.float32, name="decode_raw")
        else:
            raise ValueError('''unsupported image data type "%s", currently only know how to
            handle uint8 and float32''' % img_dtype)
        image_reshaped = tf.reshape(image_float, shape, name="reshaped")
        image_reshaped = imageIO.fixColorChannelOrdering(channelOrder, image_reshaped)
        image_input = tf.expand_dims(image_reshaped, 0, name="image_input")
        gfn = issn.asGraphFunction([height, width, image_buffer, num_channels], [image_input])

    return gfn
开发者ID:pawanrana,项目名称:spark-deep-learning,代码行数:33,代码来源:pieces.py

示例9: read_data

    def read_data(self, filename_queue, has_3d=False):
        with tf.name_scope(None, 'read_data', [filename_queue]):
            reader = tf.TFRecordReader()
            _, example_serialized = reader.read(filename_queue)
            if has_3d:
                image, image_size, label, center, fname, pose, shape, gt3d, has_smpl3d = data_utils.parse_example_proto(
                    example_serialized, has_3d=has_3d)
                # Need to send pose bc image can get flipped.
                image, label, pose, gt3d = self.image_preprocessing(
                    image, image_size, label, center, pose=pose, gt3d=gt3d)

                # Convert pose to rotation.
                # Do not ignore the global!!
                rotations = batch_rodrigues(tf.reshape(pose, [-1, 3]))
                gt3d_flat = tf.reshape(gt3d, [-1])
                # Label 3d is:
                #   [rotations, shape-beta, 3Djoints]
                #   [216=24*3*3, 10, 42=14*3]
                label3d = tf.concat(
                    [tf.reshape(rotations, [-1]), shape, gt3d_flat], 0)
            else:
                image, image_size, label, center, fname = data_utils.parse_example_proto(
                    example_serialized)
                image, label = self.image_preprocessing(
                    image, image_size, label, center)

            # label should be K x 3
            label = tf.transpose(label)

            if has_3d:
                return image, label, label3d, has_smpl3d
            else:
                return image, label
开发者ID:andrewjong,项目名称:hmr,代码行数:33,代码来源:data_loader.py

示例10: conv_net

def conv_net(_X, _weights, _biases, _dropout):
    # Reshape input picture
    _X = tf.reshape(_X, shape=[-1, 28, 28, 1])

    # Convolution Layer
    conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])
    # Max Pooling (down-sampling)
    conv1 = max_pool(conv1, k=2)
    # Apply Dropout
    conv1 = tf.nn.dropout(conv1, _dropout)

    # Convolution Layer
    conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])
    # Max Pooling (down-sampling)
    conv2 = max_pool(conv2, k=2)
    # Apply Dropout
    conv2 = tf.nn.dropout(conv2, _dropout)

    # Fully connected layer
    dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv2 output to fit dense layer input
    dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, _weights['wd1']), _biases['bd1'])) # Relu activation
    dense1 = tf.nn.dropout(dense1, _dropout) # Apply Dropout

    # Output, class prediction
    out = tf.add(tf.matmul(dense1, _weights['out']), _biases['out'])
    return out
开发者ID:Dayz001,项目名称:MachineLearning,代码行数:26,代码来源:main_load_Conv.py

示例11: knn_point

def knn_point(k, xyz1, xyz2):
    '''
    Input:
        k: int32, number of k in k-nn search
        xyz1: (batch_size, ndataset, c) float32 array, input points
        xyz2: (batch_size, npoint, c) float32 array, query points
    Output:
        val: (batch_size, npoint, k) float32 array, L2 distances
        idx: (batch_size, npoint, k) int32 array, indices to input points
    '''
    b = xyz1.get_shape()[0].value
    n = xyz1.get_shape()[1].value
    c = xyz1.get_shape()[2].value
    m = xyz2.get_shape()[1].value
    print b, n, c, m
    print xyz1, (b,1,n,c)
    xyz1 = tf.tile(tf.reshape(xyz1, (b,1,n,c)), [1,m,1,1])
    xyz2 = tf.tile(tf.reshape(xyz2, (b,m,1,c)), [1,1,n,1])
    dist = tf.reduce_sum((xyz1-xyz2)**2, -1)
    print dist, k
    outi, out = select_top_k(k, dist)
    idx = tf.slice(outi, [0,0,0], [-1,-1,k])
    val = tf.slice(out, [0,0,0], [-1,-1,k])
    print idx, val
    #val, idx = tf.nn.top_k(-dist, k=k) # ONLY SUPPORT CPU
    return val, idx
开发者ID:joosm,项目名称:pointnet2,代码行数:26,代码来源:tf_grouping.py

示例12: din_fcn_shine

def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
    if isinstance(facts, tuple):
        # In case of Bi-RNN, concatenate the forward and the backward RNN
        # outputs.
        facts = tf.concat(facts, 2)

    if time_major:
        # (T,B,D) => (B,T,D)
        facts = tf.array_ops.transpose(facts, [1, 0, 2])
    # Trainable parameters
    mask = tf.equal(mask, tf.ones_like(mask))
    # D value - hidden size of the RNN layer
    facts_size = facts.get_shape().as_list()[-1]
    querry_size = query.get_shape().as_list()[-1]
    query = tf.layers.dense(
        query, facts_size, activation=None, name='f1_trans_shine' + stag)
    query = prelu(query)
    queries = tf.tile(query, [1, tf.shape(facts)[1]])
    queries = tf.reshape(queries, tf.shape(facts))
    din_all = tf.concat(
        [queries, facts, queries - facts, queries * facts], axis=-1)
    d_layer_1_all = tf.layers.dense(
        din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag)
    d_layer_2_all = tf.layers.dense(
        d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag)
    d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts))
    output = d_layer_2_all
    return output
开发者ID:q64545,项目名称:x-deeplearning,代码行数:28,代码来源:utils.py

示例13: accumulate_privacy_spending

  def accumulate_privacy_spending(self, eps_delta, unused_sigma,
                                  num_examples):
    """Accumulate the privacy spending.

    Currently only support approximate privacy. Here we assume we use Gaussian
    noise on randomly sampled batch so we get better composition: 1. the per
    batch privacy is computed using privacy amplication via sampling bound;
    2. the composition is done using the composition with Gaussian noise.
    TODO(liqzhang) Add a link to a document that describes the bounds used.

    Args:
      eps_delta: EpsDelta pair which can be tensors.
      unused_sigma: the noise sigma. Unused for this accountant.
      num_examples: the number of examples involved.
    Returns:
      a TensorFlow operation for updating the privacy spending.
    """

    eps, delta = eps_delta
    with tf.control_dependencies(
        [tf.Assert(tf.greater(delta, 0),
                   ["delta needs to be greater than 0"])]):
      amortize_ratio = (tf.cast(num_examples, tf.float32) * 1.0 /
                        self._total_examples)
      # Use privacy amplification via sampling bound.
      # See Lemma 2.2 in http://arxiv.org/pdf/1405.7085v2.pdf
      # TODO(liqzhang) Add a link to a document with formal statement
      # and proof.
      amortize_eps = tf.reshape(tf.log(1.0 + amortize_ratio * (
          tf.exp(eps) - 1.0)), [1])
      amortize_delta = tf.reshape(amortize_ratio * delta, [1])
      return tf.group(*[tf.assign_add(self._eps_squared_sum,
                                      tf.square(amortize_eps)),
                        tf.assign_add(self._delta_sum, amortize_delta)])
开发者ID:ZhangShiyue,项目名称:models,代码行数:34,代码来源:accountant.py

示例14: add_logits_op

    def add_logits_op(self):
        """
        Adds logits to self
        """
        with tf.variable_scope("bi-lstm"):
            lstm_fwrd_cell = tf.contrib.rnn.LSTMCell(self.hidden_size)
            lstm_back_cell = tf.contrib.rnn.LSTMCell(self.hidden_size)
            (output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(lstm_fwrd_cell,
                                                                        lstm_back_cell,
                                                                        self.word_embeddings,
                                                                        sequence_length=self.sequence_lengths,
                                                                        dtype=tf.float32)
            output = tf.concat([output_fw, output_bw], axis=-1)
            output = tf.nn.dropout(output, self.dropout)

        with tf.variable_scope("proj"):
            W = tf.get_variable("W", shape=[2*self.hidden_size, self.ntags],
                dtype=tf.float32)

            b = tf.get_variable("b", shape=[self.ntags], dtype=tf.float32,
                initializer=tf.zeros_initializer())

            ntime_steps = tf.shape(output)[1]
            output = tf.reshape(output, [-1, 2*self.hidden_size])
            pred = tf.matmul(output, W) + b
            self.logits = tf.reshape(pred, [-1, ntime_steps, self.ntags])
开发者ID:yyf013932,项目名称:tensormsa,代码行数:26,代码来源:neuralnet_node_bilstmcrf.py

示例15: tf_random_modifiers

def tf_random_modifiers(flat_img, window_dims, name=None):
    float_img = tf.cast(flat_img, tf.float32)

    w, h = window_dims
    mod_image = tf.reshape(float_img, (h, w, 3))

    # # Define the modifier ops:
    # brightness_mod = lambda x: tf.image.random_brightness(x, max_delta=0.3)
    # contrast_mod = lambda x: tf.image.random_contrast(x, lower=0.2, upper=1.8)
    # saturation_mod = lambda x: tf.image.random_saturation(x, lower=0.2, upper=1.8)
    # hue_mod = lambda x: tf.image.random_hue(x, max_delta=0.025)
    # modifier_ops = [brightness_mod, contrast_mod, saturation_mod, hue_mod]
    # # Choose a random order for the modifiers:
    # perm = np.arange(len(modifier_ops))
    # np.random.shuffle(perm)
    # # Apply the modifiers in a random order:
    # for i in perm:
    #     mod_op = modifier_ops[i]
    #     mod_image = mod_op(mod_image)

    mod_image = tf.image.random_brightness(mod_image, max_delta=0.3)
    mod_image = tf.image.random_contrast(mod_image, lower=0.2, upper=1.8)
    mod_image = tf.image.random_saturation(mod_image, lower=0.2, upper=1.8)
    mod_image = tf.image.random_hue(mod_image, max_delta=0.025)

    # Subtract off the mean and divide by the variance of the pixels.
    final_image = tf.image.per_image_whitening(mod_image)

    final_flat_image = tf.reshape(final_image, (w*h*3,), name=name)
    print 'final_flat_image.get_shape()', final_flat_image.get_shape()

    return final_flat_image
开发者ID:LHY20,项目名称:car-detection,代码行数:32,代码来源:input_data.py


注:本文中的tensorflow.reshape函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。