当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.reset_default_graph函数代码示例

本文整理汇总了Python中tensorflow.reset_default_graph函数的典型用法代码示例。如果您正苦于以下问题:Python reset_default_graph函数的具体用法?Python reset_default_graph怎么用?Python reset_default_graph使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了reset_default_graph函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self, params=params, dyn='FCC'):
        tf.reset_default_graph()

        data = self.sample_mog(params['batch_size'])

        noise = ds.Normal(tf.zeros(params['z_dim']), 
                          tf.ones(params['z_dim'])).sample(params['batch_size'])
        # Construct generator and discriminator nets
        with slim.arg_scope([slim.fully_connected], weights_initializer=tf.orthogonal_initializer(gain=1.4)):
            samples = self.generator(noise, output_dim=params['x_dim'])
            real_score = self.discriminator(data)
            fake_score = self.discriminator(samples, reuse=True)
            
        # Saddle objective    
        loss = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=real_score, labels=tf.ones_like(real_score)) +
            tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_score, labels=tf.zeros_like(fake_score)))

        gen_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "generator")
        disc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "discriminator")
        gen_shapes = [tuple(v.get_shape().as_list()) for v in gen_vars]
        disc_shapes = [tuple(v.get_shape().as_list()) for v in disc_vars]

        # Generator gradient
        g_opt = tf.train.GradientDescentOptimizer(learning_rate=params['gen_learning_rate'])
        g_grads = g_opt.compute_gradients(-loss, var_list=gen_vars)

        # Discriminator gradient
        d_opt = tf.train.GradientDescentOptimizer(learning_rate=params['disc_learning_rate'])
        d_grads = d_opt.compute_gradients(loss, var_list=disc_vars)

        # Squared Norm of Gradient: d/dx 1/2||F||^2 = J^T F
        grads_norm_sep = [tf.reduce_sum(g[0]**2) for g in g_grads+d_grads]
        grads_norm = 0.5*tf.reduce_sum(grads_norm_sep)

        # Gradient of Squared Norm
        JTF = tf.gradients(grads_norm, xs=gen_vars+disc_vars)

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())

        self.params = params
        self.data = data
        self.samples = samples
        self.gen_vars = gen_vars
        self.disc_vars = disc_vars
        self.gen_shapes = gen_shapes
        self.disc_shapes = disc_shapes
        self.Fg = g_grads
        self.Fd = d_grads
        self.JTF = JTF
        self.sess = sess
        self.findiff_step = params['findiff_step']
        self.gamma = params['gamma']
        self.dyn = dyn

        if dyn == 'FCC':
            self.F = self.FCC
        else:
            self.F = self._F
开发者ID:all-umass,项目名称:VI-Solver,代码行数:60,代码来源:GMGAN.py

示例2: generate_testdata

  def generate_testdata(self, include_text=True, logdir=None):
    tf.reset_default_graph()
    sess = tf.Session()
    placeholder = tf.placeholder(tf.string)
    summary_tensor = tf.summary.text('message', placeholder)
    vector_summary = tf.summary.text('vector', placeholder)
    scalar_summary = tf.summary.scalar('twelve', tf.constant(12))

    run_names = ['fry', 'leela']
    for run_name in run_names:
      subdir = os.path.join(logdir or self.logdir, run_name)
      writer = tf.summary.FileWriter(subdir)
      writer.add_graph(sess.graph)

      step = 0
      for gem in GEMS:
        message = run_name + ' *loves* ' + gem
        feed_dict = {
            placeholder: message,
        }
        if include_text:
          summ = sess.run(summary_tensor, feed_dict=feed_dict)
          writer.add_summary(summ, global_step=step)
        step += 1

      vector_message = ['one', 'two', 'three', 'four']
      if include_text:
        summ = sess.run(vector_summary, feed_dict={placeholder: vector_message})
        writer.add_summary(summ)

      summ = sess.run(scalar_summary, feed_dict={placeholder: []})
      writer.add_summary(summ)

      writer.close()
开发者ID:jtagscherer,项目名称:tensorboard,代码行数:34,代码来源:text_plugin_test.py

示例3: setUp

 def setUp(self):
     tf.reset_default_graph()
     self.m = AddModel()
     self.m._compile()
     rng = np.random.RandomState(0)
     self.x = rng.randn(10, 20)
     self.y = rng.randn(10, 20)
开发者ID:blutooth,项目名称:dgp,代码行数:7,代码来源:test_autoflow.py

示例4: tf_baseline_conv2d

def tf_baseline_conv2d():
    import tensorflow as tf
    import cntk.contrib.crosstalk.crosstalk_tensorflow as crtf
    ci = crtf.instance

    tf.reset_default_graph()

    x = tf.placeholder(tf.float32, [batch_size, num_chars, char_emb_dim])
    filter_bank = tf.get_variable("char_filter_bank",
                                  shape=[filter_width, char_emb_dim, num_filters],
                                  dtype=tf.float32)
    bias = tf.get_variable("char_filter_biases", shape=[num_filters], dtype=tf.float32)

    char_conv = tf.expand_dims(tf.transpose(tf.nn.conv1d(x, filter_bank, stride=1, padding='VALID') + bias, perm=[0,2,1]), -1)

    ci.watch(cstk.Conv2DArgs(W=crtf.find_trainable('char_filter_bank'), b=crtf.find_trainable('char_filter_biases')), 'conv2d', var_type=cstk.Conv2DAttr,
               attr=cstk.Conv2DAttr(filter_shape=(filter_width, char_emb_dim,), num_filters=num_filters))
    ci.watch(char_conv, 'conv2d_out', var_type=crtf.VariableType) # note the output is transposed to NCHW

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        data = {x:input_data}
        ci.set_workdir(workdir)
        ci.set_data(sess, data)
        ci.fetch('conv2d_out', save=True)
        ci.fetch('conv2d', save=True)
        ci.assign('conv2d', load=True)
        assert ci.compare('conv2d_out')
        ci.reset()
        sess.close()
开发者ID:AllanYiin,项目名称:CNTK,代码行数:30,代码来源:conv2d_test.py

示例5: rename

def rename(checkpoint, replace_from, replace_to, add_prefix, dry_run, force_prefix=False):
    import tensorflow as tf
    tf.reset_default_graph()
    with tf.Session() as sess:
        for var_name, _ in tf.contrib.framework.list_variables(checkpoint):
            # Load the variable
            var = tf.contrib.framework.load_variable(checkpoint, var_name)

            # Set the new name
            new_name = var_name
            if None not in [replace_from, replace_to]:
                new_name = new_name.replace(replace_from, replace_to)
            if add_prefix:
                if force_prefix or not new_name.startswith(add_prefix):
                    # force prefix or add prefix if it does not exist yet
                    new_name = add_prefix + new_name

            if dry_run:
                print('%s would be renamed to %s.' % (var_name, new_name))
            else:
                if var_name == new_name:
                    print('No change for {}'.format(var_name))
                else:
                    print('Renaming %s to %s.' % (var_name, new_name))

                # Rename the variable
                tf.Variable(var, name=new_name)

        if not dry_run:
            # Save the variables
            saver = tf.train.Saver()
            sess.run(tf.global_variables_initializer())
            saver.save(sess, checkpoint)

    tf.reset_default_graph()
开发者ID:AIRob,项目名称:calamari,代码行数:35,代码来源:tensorflow_rename_variables.py

示例6: eval_snapshot

def eval_snapshot(envname, checkptfile, last_snapshot_idx, n_trajs, mode):
    import tensorflow as tf
    if mode == 'rltools':
        import h5py
        with h5py.File(checkptfile, 'r') as f:
            args = json.loads(f.attrs['args'])
    elif mode == 'rllab':
        params_file = os.path.join(checkptfile, 'params.json')
        with open(params_file, 'r') as df:
            args = json.load(df)

    env = envname2env(envname, args)
    bestidx = 0
    bestret = -np.inf
    bestevr = {}
    for idx in range((last_snapshot_idx - 10), (last_snapshot_idx + 1)):
        tf.reset_default_graph()
        minion = Evaluator(env, args, args['max_traj_len'] if mode == 'rltools' else
                           args['max_path_length'], n_trajs, False, mode)
        if mode == 'rltools':
            evr = minion(checkptfile, file_key='snapshots/iter%07d' % idx)
        elif mode == 'rllab':
            evr = minion(os.path.join(checkptfile, 'itr_{}.pkl'.format(idx)))

        if np.mean(evr['ret']) > bestret:
            bestret = np.mean(evr['ret'])
            bestevr = evr
            bestidx = idx
    return bestevr, bestidx
开发者ID:TJUSCS-RLLAB,项目名称:MADRL,代码行数:29,代码来源:pipeline.py

示例7: setUp

    def setUp(self):
        tf.reset_default_graph()
        rng = np.random.RandomState(0)
        X = rng.rand(20,1)*10
        Y = np.sin(X) + 0.9 * np.cos(X*1.6) + rng.randn(*X.shape)* 0.8
        self.Xtest = rng.rand(10,1)*10

        m1 = GPflow.gpr.GPR(X, Y, kern=GPflow.kernels.RBF(1),\
                                mean_function=GPflow.mean_functions.Constant())                                
        m2 = GPflow.vgp.VGP(X, Y, GPflow.kernels.RBF(1), likelihood=GPflow.likelihoods.Gaussian(),\
                                mean_function=GPflow.mean_functions.Constant())
        m3 = GPflow.svgp.SVGP(X, Y, GPflow.kernels.RBF(1),
                              likelihood=GPflow.likelihoods.Gaussian(),
                              Z=X.copy(), q_diag=False,\
                              mean_function=GPflow.mean_functions.Constant())
        m3.Z.fixed = True
        m4 = GPflow.svgp.SVGP(X, Y, GPflow.kernels.RBF(1),
                              likelihood=GPflow.likelihoods.Gaussian(),
                              Z=X.copy(), q_diag=False, whiten=True,\
                              mean_function=GPflow.mean_functions.Constant())
        m4.Z.fixed=True
        m5 = GPflow.sgpr.SGPR(X, Y, GPflow.kernels.RBF(1),
                              Z=X.copy(),\
                              mean_function=GPflow.mean_functions.Constant())
                              
        m5.Z.fixed = True
        m6 = GPflow.sgpr.GPRFITC(X, Y, GPflow.kernels.RBF(1), Z=X.copy(),\
                              mean_function=GPflow.mean_functions.Constant())
        m6.Z.fixed = True
        self.models = [m1, m2, m3, m4, m5, m6]
        for m in self.models:
            m.optimize(display=False, max_iters=300)
            print('.') # stop travis timing out
开发者ID:blutooth,项目名称:dgp,代码行数:33,代码来源:test_method_equivalence.py

示例8: fit_em

def fit_em(X, initial_mus, max_steps, tol, min_covar=MIN_COVAR_DEFAULT):
    tf.reset_default_graph()
    
    N, D = X.shape
    K, Dmu = initial_mus.shape
    assert D == Dmu
        
    mus0 = initial_mus
    sigmas0 = np.tile(np.var(X, axis=0), (K, 1))
    alphas0 = np.ones(K) / K
    X = tf.constant(X)
    
    mus, sigmas, alphas = (tf.Variable(x, dtype='float64') for x in [mus0, sigmas0, alphas0])
    
    all_ll, resp = estep(X, mus, sigmas, alphas)
    cmus, csigmas, calphas = mstep(X, resp, min_covar=min_covar)
    update_mus_step = tf.assign(mus, cmus)
    update_sigmas_step = tf.assign(sigmas, csigmas)
    update_alphas_step = tf.assign(alphas, calphas)     
    
    init_op = tf.initialize_all_variables()
    ll = prev_ll = -np.inf

    with tf.Session() as sess:
        sess.run(init_op)
        for i in range(max_steps):
            ll = sess.run(tf.reduce_mean(all_ll))
            sess.run((update_mus_step, update_sigmas_step, update_alphas_step))
            #print('EM iteration', i, 'log likelihood', ll)
            if abs(ll - prev_ll) < tol:
                break
            prev_ll = ll
        m, s, a = sess.run((mus, sigmas, alphas))
    
    return ll, m, s, a
开发者ID:PrincetonUniversity,项目名称:final-proj-cos-424,代码行数:35,代码来源:tf_gmm_em.py

示例9: build

    def build(self,  configuration):
        tf.reset_default_graph()

        # --- specify input data
        self.inputs = tf.placeholder(tf.float32, [None, 28, 28, 1], name='x')
        self.labels = tf.placeholder(tf.float32, [None, 10], name='labels')
        # tf.summary.image('input', inputs, 3)
        # TODO add name scopes and summaries

        # --- specify layers of network
        # TODO try another strides for conv layer
        # TODO try to get rid of pooling layer
        conv1 = tf.layers.conv2d(inputs=self.inputs, filters=configuration[0], kernel_size=[5, 5], padding="same",
                                 activation=tf.nn.relu, name='conv1')
        pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2, name='pool1')
        conv2 = tf.layers.conv2d(inputs=pool1, filters=configuration[1], kernel_size=[5, 5], padding="same",
                                 activation=tf.nn.relu, name='conv2')
        pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2, name='pool2')
        flattened = tf.reshape(pool2, [-1, 7 * 7 * configuration[1]])
        dense = tf.layers.dense(inputs=flattened, units=1024, activation=tf.nn.relu, name='fc')
        logits = tf.layers.dense(inputs=dense, units=10, name='output')

        # --- specify cost function and how training is performed
        with tf.name_scope("train"):
            cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=logits)
            self.train_step = tf.train.AdamOptimizer(0.015).minimize(cross_entropy)

        # --- specify function to calculate accuracy
        with tf.name_scope("accuracy"):
            correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(self.labels, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            tf.summary.scalar("accuracy", self.accuracy)

        self.summary = tf.summary.merge_all()
开发者ID:ZdyrkoVlad,项目名称:mnist-cnn,代码行数:34,代码来源:network.py

示例10: run

def run(data_seed, dropout, input_noise, augmentation,
        test_phase=False, n_labeled=250, n_extra_unlabeled=0, model_type='mean_teacher'):
    minibatch_size = 100
    hyperparams = model_hyperparameters(model_type, n_labeled, n_extra_unlabeled)

    tf.reset_default_graph()
    model = Model(RunContext(__file__, data_seed))

    svhn = SVHN(n_labeled=n_labeled,
                n_extra_unlabeled=n_extra_unlabeled,
                data_seed=data_seed,
                test_phase=test_phase)

    model['ema_consistency'] = hyperparams['ema_consistency']
    model['max_consistency_cost'] = hyperparams['max_consistency_cost']
    model['apply_consistency_to_labeled'] = hyperparams['apply_consistency_to_labeled']
    model['training_length'] = hyperparams['training_length']
    model['student_dropout_probability'] = dropout
    model['teacher_dropout_probability'] = dropout
    model['input_noise'] = input_noise
    model['translate'] = augmentation

    training_batches = minibatching.training_batches(svhn.training,
                                                     minibatch_size,
                                                     hyperparams['n_labeled_per_batch'])
    evaluation_batches_fn = minibatching.evaluation_epoch_generator(svhn.evaluation,
                                                                    minibatch_size)

    tensorboard_dir = model.save_tensorboard_graph()
    LOG.info("Saved tensorboard graph to %r", tensorboard_dir)

    model.train(training_batches, evaluation_batches_fn)
开发者ID:ys2899,项目名称:mean-teacher,代码行数:32,代码来源:svhn_250_vary_perturbation.py

示例11: run

def run(test_phase, data_seed, n_labeled, training_length, rampdown_length):
    minibatch_size = 100
    n_labeled_per_batch = 100

    tf.reset_default_graph()
    model = Model(RunContext(__file__, data_seed))

    cifar = SVHN(n_labeled=n_labeled,
                 data_seed=data_seed,
                 test_phase=test_phase)

    model['ema_consistency'] = True
    model['max_consistency_cost'] = 0.0
    model['apply_consistency_to_labeled'] = False
    model['rampdown_length'] = rampdown_length
    model['training_length'] = training_length

    # Turn off augmentation
    model['translate'] = False
    model['flip_horizontally'] = False

    training_batches = minibatching.training_batches(cifar.training,
                                                     minibatch_size,
                                                     n_labeled_per_batch)
    evaluation_batches_fn = minibatching.evaluation_epoch_generator(cifar.evaluation,
                                                                    minibatch_size)

    tensorboard_dir = model.save_tensorboard_graph()
    LOG.info("Saved tensorboard graph to %r", tensorboard_dir)

    model.train(training_batches, evaluation_batches_fn)
开发者ID:ys2899,项目名称:mean-teacher,代码行数:31,代码来源:svhn_supervised_no_augmentation_final_eval.py

示例12: testBasic

  def testBasic(self):
    base_path = tf.test.test_src_dir_path(
        "contrib/session_bundle/example/half_plus_two/00000123")
    tf.reset_default_graph()
    sess, meta_graph_def = session_bundle.load_session_bundle_from_path(
        base_path, target="", config=tf.ConfigProto(device_count={"CPU": 2}))

    self.assertTrue(sess)
    asset_path = os.path.join(base_path, constants.ASSETS_DIRECTORY)
    with sess.as_default():
      path1, path2 = sess.run(["filename1:0", "filename2:0"])
      self.assertEqual(
          compat.as_bytes(os.path.join(asset_path, "hello1.txt")), path1)
      self.assertEqual(
          compat.as_bytes(os.path.join(asset_path, "hello2.txt")), path2)

      collection_def = meta_graph_def.collection_def

      signatures_any = collection_def[constants.SIGNATURES_KEY].any_list.value
      self.assertEquals(len(signatures_any), 1)

      signatures = manifest_pb2.Signatures()
      signatures_any[0].Unpack(signatures)
      self._checkRegressionSignature(signatures, sess)
      self._checkNamedSigantures(signatures, sess)
开发者ID:821760408-sp,项目名称:tensorflow,代码行数:25,代码来源:session_bundle_test.py

示例13: saveAndRestoreModel

  def saveAndRestoreModel(self, fw_lstm_layer, bw_lstm_layer, sess, saver,
                          is_dynamic_rnn):
    """Saves and restores the model to mimic the most common use case.

    Args:
      fw_lstm_layer: The forward lstm layer either a single lstm cell or a multi
        lstm cell.
      bw_lstm_layer: The backward lstm layer either a single lstm cell or a
        multi lstm cell.
      sess: Old session.
      saver: saver created by tf.compat.v1.train.Saver()
      is_dynamic_rnn: use dynamic_rnn or not.

    Returns:
      A tuple containing:

      - Input tensor of the restored model.
      - Prediction tensor of the restored model.
      - Output tensor, which is the softwmax result of the prediction tensor.
      - new session of the restored model.

    """
    model_dir = tempfile.mkdtemp()
    saver.save(sess, model_dir)

    # Reset the graph.
    tf.reset_default_graph()
    x, prediction, output_class = self.buildModel(fw_lstm_layer, bw_lstm_layer,
                                                  is_dynamic_rnn)

    new_sess = tf.Session(config=CONFIG)
    saver = tf.train.Saver()
    saver.restore(new_sess, model_dir)
    return x, prediction, output_class, new_sess
开发者ID:ahmedsaiduk,项目名称:tensorflow,代码行数:34,代码来源:bidirectional_sequence_lstm_test.py

示例14: setUp

 def setUp(self):
     tf.reset_default_graph()
     self.x = tf.placeholder(tf.float64)
     self.x_np = np.random.randn(10)
     self.session = tf.Session()
     self.transforms = [C() for C in GPflow.transforms.Transform.__subclasses__()]
     self.transforms.append(GPflow.transforms.Logistic(7.3, 19.4))
开发者ID:davharris,项目名称:GPflow,代码行数:7,代码来源:test_transforms.py

示例15: train

def train(config, inputs, args):
    gan = setup_gan(config, inputs, args)
    sampler = lookup_sampler(args.sampler or TrainingVideoFrameSampler)(gan)
    samples = 0

    #metrics = [batch_accuracy(gan.inputs.x, gan.uniform_sample), batch_diversity(gan.uniform_sample)]
    #sum_metrics = [0 for metric in metrics]
    for i in range(args.steps):
        gan.step()

        if args.action == 'train' and i % args.save_every == 0 and i > 0:
            print("saving " + save_file)
            gan.save(save_file)

        if i % args.sample_every == 0:
            sample_file="samples/%06d.png" % (samples)
            samples += 1
            sampler.sample(sample_file, args.save_samples)

        #if i > args.steps * 9.0/10:
        #    for k, metric in enumerate(gan.session.run(metrics)):
        #        print("Metric "+str(k)+" "+str(metric))
        #        sum_metrics[k] += metric 

    tf.reset_default_graph()
    return []#sum_metrics
开发者ID:255BITS,项目名称:hyperchamber-gan,代码行数:26,代码来源:next-frame-wip.py


注:本文中的tensorflow.reset_default_graph函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。