当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.random_uniform函数代码示例

本文整理汇总了Python中tensorflow.random_uniform函数的典型用法代码示例。如果您正苦于以下问题:Python random_uniform函数的具体用法?Python random_uniform怎么用?Python random_uniform使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了random_uniform函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self, args):
        with tf.device(args.device):
            def circle(x):
                spherenet = tf.square(x)
                spherenet = tf.reduce_sum(spherenet, 1)
                lam = tf.sqrt(spherenet)
                return x/tf.reshape(lam,[int(lam.get_shape()[0]), 1])

            def modes(x):
                shape = x.get_shape()
                return tf.round(x*2)/2.0#+tf.random_normal(shape, 0, 0.04)

            if args.distribution == 'circle':
                x = tf.random_normal([args.batch_size, 2])
                x = circle(x)
            elif args.distribution == 'modes':
                x = tf.random_uniform([args.batch_size, 2], -1, 1)
                x = modes(x)
            elif args.distribution == 'modal-gaussian':
                x = tf.random_uniform([args.batch_size, 2], -1, 1)
                y = tf.random_normal([args.batch_size, 2], stddev=0.04, mean=0.15)
                x = tf.round(x) + y
            elif args.distribution == 'sin':
                x = tf.random_uniform((1, args.batch_size), -10.5, 10.5 )
                x = tf.transpose(x)
                r_data = tf.random_normal((args.batch_size,1), mean=0, stddev=0.1)
                xy = tf.sin(0.75*x)*7.0+x*0.5+r_data*1.0
                x = tf.concat([xy,x], 1)/16.0

            elif args.distribution == 'static-point':
                x = tf.ones([args.batch_size, 2])

            self.x = x
            self.xy = tf.zeros_like(self.x)
开发者ID:255BITS,项目名称:hyperchamber-gan,代码行数:34,代码来源:2d-distribution.py

示例2: testDiscretizedMixLogisticLoss

  def testDiscretizedMixLogisticLoss(self):
    batch = 2
    height = 4
    width = 4
    channels = 3
    num_mixtures = 5
    logits = tf.concat(  # assign all probability mass to first component
        [tf.ones([batch, height, width, 1]) * 1e8,
         tf.zeros([batch, height, width, num_mixtures - 1])],
        axis=-1)
    locs = tf.random_uniform([batch, height, width, num_mixtures * 3],
                             minval=-.9, maxval=.9)
    log_scales = tf.random_uniform([batch, height, width, num_mixtures * 3],
                                   minval=-1., maxval=1.)
    coeffs = tf.atanh(tf.zeros([batch, height, width, num_mixtures * 3]))
    pred = tf.concat([logits, locs, log_scales, coeffs], axis=-1)

    # Test labels that don't satisfy edge cases where 8-bit value is 0 or 255.
    labels = tf.random_uniform([batch, height, width, channels],
                               minval=-.9, maxval=.9)
    locs_0 = locs[..., :3]
    log_scales_0 = log_scales[..., :3]
    centered_labels = labels - locs_0
    inv_stdv = tf.exp(-log_scales_0)
    plus_in = inv_stdv * (centered_labels + 1. / 255.)
    min_in = inv_stdv * (centered_labels - 1. / 255.)
    cdf_plus = tf.nn.sigmoid(plus_in)
    cdf_min = tf.nn.sigmoid(min_in)
    expected_loss = -tf.reduce_sum(tf.log(cdf_plus - cdf_min), axis=-1)

    actual_loss = common_layers.discretized_mix_logistic_loss(
        pred=pred, labels=labels)
    actual_loss_val, expected_loss_val = self.evaluate(
        [actual_loss, expected_loss])
    self.assertAllClose(actual_loss_val, expected_loss_val, rtol=1e-5)
开发者ID:qixiuai,项目名称:tensor2tensor,代码行数:35,代码来源:common_layers_test.py

示例3: __init__

    def __init__(self, dim_image, n_words, dim_hidden, batch_size, n_lstm_steps, drop_out_rate, bias_init_vector=None):
        self.dim_image = dim_image
        self.n_words = n_words
        self.dim_hidden = dim_hidden
        self.batch_size = batch_size
        self.n_lstm_steps = n_lstm_steps
        self.drop_out_rate = drop_out_rate


        with tf.device("/gpu:2"):
            self.Wemb = tf.Variable(tf.random_uniform([n_words, dim_hidden], -0.1, 0.1), name='Wemb')

#         self.lstm1 = rnn_cell.BasicLSTMCell(dim_hidden)
#         self.lstm2 = rnn_cell.BasicLSTMCell(dim_hidden)
        
        self.lstm1 = rnn_cell.LSTMCell(self.dim_hidden,self.dim_hidden,use_peepholes = True)
        self.lstm1_dropout = rnn_cell.DropoutWrapper(self.lstm1,output_keep_prob=1 - self.drop_out_rate)
        self.lstm2 = rnn_cell.LSTMCell(self.dim_hidden,self.dim_hidden,use_peepholes = True)
        self.lstm2_dropout = rnn_cell.DropoutWrapper(self.lstm2,output_keep_prob=1 - self.drop_out_rate)
        
        
        # W is Weight, b is Bias 
        self.encode_image_W = tf.Variable( tf.random_uniform([dim_image, dim_hidden], -0.1, 0.1), name='encode_image_W')
        self.encode_image_b = tf.Variable( tf.zeros([dim_hidden]), name='encode_image_b')

        self.embed_word_W = tf.Variable(tf.random_uniform([dim_hidden, n_words], -0.1,0.1), name='embed_word_W')
        if bias_init_vector is not None:
            self.embed_word_b = tf.Variable(bias_init_vector.astype(np.float32), name='embed_word_b')
        else:
            self.embed_word_b = tf.Variable(tf.zeros([n_words]), name='embed_word_b')
开发者ID:meteora9479,项目名称:video_to_sequence,代码行数:30,代码来源:msrvtt_model.py

示例4: denseNet

	def denseNet(self, hidden=20, depth=3, act=tf.nn.tanh, dropout=True, norm=None):  #
		if (hidden > 100): print("WARNING: denseNet uses quadratic mem for " + str(hidden))
		if (depth < 3): print(
			"WARNING: did you mean to use Fully connected layer 'dense'? Expecting depth>3 vs " + str(depth))
		inputs = self.last_layer
		inputs_width = self.last_width
		width = hidden
		while depth > 0:
			with tf.name_scope('DenNet_{:d}'.format(width)) as scope:
				print("dense width ", inputs_width, "x", width)
				nr = len(self.layers)
				weights = tf.Variable(tf.random_uniform([inputs_width, width], minval=-1. / width, maxval=1. / width),
				                      name="weights")
				bias = tf.Variable(tf.random_uniform([width], minval=-1. / width, maxval=1. / width),
				                   name="bias")  # auto nr + context
				dense1 = tf.matmul(inputs, weights, name='dense_' + str(nr)) + bias
				tf.summary.histogram('dense_' + str(nr), dense1)
				tf.summary.histogram('dense_' + str(nr) + '/sparsity', tf.nn.zero_fraction(dense1))
				tf.summary.histogram('weights_' + str(nr), weights)
				tf.summary.histogram('weights_' + str(nr) + '/sparsity', tf.nn.zero_fraction(weights))
				tf.summary.histogram('bias_' + str(nr), bias)

				if act: dense1 = act(dense1)
				if norm: dense1 = self.norm(dense1, lsize=1)  # SHAPE!
				if dropout: dense1 = tf.nn.dropout(dense1, self.keep_prob)
				self.add(dense1)
				self.last_width = width
				inputs = tf.concat(1, [inputs, dense1])
				inputs_width += width
				depth = depth - 1
		self.last_width = width
开发者ID:duydb2,项目名称:tensorflow-speech-recognition,代码行数:31,代码来源:net.py

示例5: test_get_expected_feature_map_shapes_with_inception_v3

  def test_get_expected_feature_map_shapes_with_inception_v3(self):
    image_features = {
        'Mixed_5d': tf.random_uniform([4, 35, 35, 256], dtype=tf.float32),
        'Mixed_6e': tf.random_uniform([4, 17, 17, 576], dtype=tf.float32),
        'Mixed_7c': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32)
    }

    feature_maps = feature_map_generators.multi_resolution_feature_maps(
        feature_map_layout=INCEPTION_V3_LAYOUT,
        depth_multiplier=1,
        min_depth=32,
        insert_1x1_conv=True,
        image_features=image_features)

    expected_feature_map_shapes = {
        'Mixed_5d': (4, 35, 35, 256),
        'Mixed_6e': (4, 17, 17, 576),
        'Mixed_7c': (4, 8, 8, 1024),
        'Mixed_7c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512),
        'Mixed_7c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256),
        'Mixed_7c_2_Conv2d_5_3x3_s2_128': (4, 1, 1, 128)}

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      out_feature_maps = sess.run(feature_maps)
      out_feature_map_shapes = dict(
          (key, value.shape) for key, value in out_feature_maps.items())
      self.assertDictEqual(out_feature_map_shapes, expected_feature_map_shapes)
开发者ID:GERASM1,项目名称:Semana-i-Equipo-Seat-Here,代码行数:29,代码来源:feature_map_generators_test.py

示例6: __init__

    def __init__(self, config):
        self.config = config

        self.input = tf.placeholder('int32', [self.config.batch_size, config.max_seq_len], name='input')
        self.labels = tf.placeholder('int64', [self.config.batch_size], name='labels')
        self.labels_one_hot = tf.one_hot(indices=self.labels,
                                         depth=config.output_dim,
                                         on_value=1.0,
                                         off_value=0.0,
                                         axis=-1)

        self.gru = GRUCell(config.hidden_state_dim)

        embeddings_we = tf.get_variable('word_embeddings', initializer=tf.random_uniform([config.vocab_size, config.embedding_dim], -1.0, 1.0))
        self.emb = embed_input = tf.nn.embedding_lookup(embeddings_we, self.input)
        inputs = [tf.squeeze(i, squeeze_dims=[1]) for i in tf.split(1, config.max_seq_len, embed_input)]

        outputs, last_slu_state = tf.nn.rnn(
            cell=self.gru,
            inputs=inputs,
            dtype=tf.float32,)

        w_project = tf.get_variable('project2labels', initializer=tf.random_uniform([config.hidden_state_dim, config.output_dim], -1.0, 1.0))
        self.logits = logits_bo = tf.matmul(last_slu_state, w_project)
        tf.histogram_summary('logits', logits_bo)
        self.probabilities = tf.nn.softmax(logits_bo)
        self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits_bo, self.labels_one_hot))
        self.predict = tf.nn.softmax(logits_bo)

        # TensorBoard
        self.accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(self.predict, 1), self.labels), 'float32'), name='accuracy')
        tf.scalar_summary('CCE loss', self.loss)
        tf.scalar_summary('Accuracy', self.accuracy)
        self.tb_info = tf.merge_all_summaries()
开发者ID:vojtsek,项目名称:sds-tracker,代码行数:34,代码来源:fat_model.py

示例7: test_get_expected_feature_map_shapes_with_embedded_ssd_mobilenet_v1

  def test_get_expected_feature_map_shapes_with_embedded_ssd_mobilenet_v1(
      self, use_keras):
    image_features = {
        'Conv2d_11_pointwise': tf.random_uniform([4, 16, 16, 512],
                                                 dtype=tf.float32),
        'Conv2d_13_pointwise': tf.random_uniform([4, 8, 8, 1024],
                                                 dtype=tf.float32),
    }

    feature_map_generator = self._build_feature_map_generator(
        feature_map_layout=EMBEDDED_SSD_MOBILENET_V1_LAYOUT,
        use_keras=use_keras
    )
    feature_maps = feature_map_generator(image_features)

    expected_feature_map_shapes = {
        'Conv2d_11_pointwise': (4, 16, 16, 512),
        'Conv2d_13_pointwise': (4, 8, 8, 1024),
        'Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_512': (4, 4, 4, 512),
        'Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256': (4, 2, 2, 256),
        'Conv2d_13_pointwise_2_Conv2d_4_2x2_s2_256': (4, 1, 1, 256)}

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      out_feature_maps = sess.run(feature_maps)
      out_feature_map_shapes = dict(
          (key, value.shape) for key, value in out_feature_maps.items())
      self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes)
开发者ID:pcm17,项目名称:models,代码行数:29,代码来源:feature_map_generators_test.py

示例8: testUnit4

 def testUnit4(self):
   x1 = tf.random_uniform([1, 19, 19, 1024])
   x2 = tf.random_uniform([1, 19, 19, 1024])
   x1, x2 = revnet.unit(x1, x2, block_num=4, depth=416,
                        num_layers=1, stride=2)
   self.assertEquals(x1.get_shape().as_list(), [1, 10, 10, 1664])
   self.assertEquals(x2.get_shape().as_list(), [1, 10, 10, 1664])
开发者ID:chqiwang,项目名称:tensor2tensor,代码行数:7,代码来源:revnet_test.py

示例9: testUnit3D

 def testUnit3D(self):
   x1 = tf.random_uniform([4, 74, 74, 74, 256])
   x2 = tf.random_uniform([4, 74, 74, 74, 256])
   x1, x2 = revnet.unit(x1, x2, block_num=5, depth=128,
                        num_layers=1, dim='3d', stride=2)
   self.assertEquals(x1.get_shape().as_list(), [4, 37, 37, 37, 512])
   self.assertEquals(x2.get_shape().as_list(), [4, 37, 37, 37, 512])
开发者ID:chqiwang,项目名称:tensor2tensor,代码行数:7,代码来源:revnet_test.py

示例10: testUnit1

 def testUnit1(self):
   x1 = tf.random_uniform([4, 74, 74, 256])
   x2 = tf.random_uniform([4, 74, 74, 256])
   x1, x2 = revnet.unit(x1, x2, block_num=1, depth=64,
                        first_batch_norm=True, num_layers=1)
   self.assertEquals(x1.get_shape().as_list(), [4, 74, 74, 256])
   self.assertEquals(x2.get_shape().as_list(), [4, 74, 74, 256])
开发者ID:chqiwang,项目名称:tensor2tensor,代码行数:7,代码来源:revnet_test.py

示例11: testUnit3

 def testUnit3(self):
   x1 = tf.random_uniform([1, 37, 37, 512])
   x2 = tf.random_uniform([1, 37, 37, 512])
   x1, x2 = revnet.unit(x1, x2, block_num=3, depth=256,
                        num_layers=10, stride=2)
   self.assertEquals(x1.get_shape().as_list(), [1, 19, 19, 1024])
   self.assertEquals(x2.get_shape().as_list(), [1, 19, 19, 1024])
开发者ID:chqiwang,项目名称:tensor2tensor,代码行数:7,代码来源:revnet_test.py

示例12: get_online_sequences

def get_online_sequences(sequence_length, batch_size):
    """Gets tensor which constantly produce new random examples.

    Args:
        sequence_length: total length of the sequences.
        batch_size: how many at a time.

    Returns:
        (data, targets): data is `[sequence_length, batch_size, 2]` and targets
            are `[batch_size]`.
    """
    # getting the random channel is easy
    random_data = tf.random_uniform([sequence_length, batch_size, 1],
                                    minval=0.0, maxval=1.0)
    # now we need a random marker in each half of the data
    random_index_1 = tf.random_uniform([1, batch_size], minval=0,
                                       maxval=sequence_length//2,
                                       dtype=tf.int32)
    random_index_2 = tf.random_uniform([1, batch_size], minval=0,
                                       maxval=sequence_length//2,
                                       dtype=tf.int32)
    markers = tf.concat(axis=2, values=[tf.one_hot(random_index_1, sequence_length//2),
                            tf.one_hot(random_index_2, sequence_length//2)])
    markers = tf.transpose(markers)
    targets = tf.reduce_sum(random_data * markers,
                            axis=0)
    return tf.concat(axis=2, values=[random_data, markers]), tf.squeeze(targets)
开发者ID:PFCM,项目名称:datasets,代码行数:27,代码来源:addition.py

示例13: benchmarkEagerLinearRegression

  def benchmarkEagerLinearRegression(self):
    num_batches = 200
    batch_size = 64
    dataset = linear_regression.synthetic_dataset(
        w=tf.random_uniform([3, 1]),
        b=tf.random_uniform([1]),
        noise_level=0.01,
        batch_size=batch_size,
        num_batches=num_batches)
    burn_in_dataset = dataset.take(10)

    model = linear_regression.LinearModel()

    with tf.device(device()):
      optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)

      # Perform burn-in.
      linear_regression.fit(model, burn_in_dataset, optimizer)

      start_time = time.time()
      linear_regression.fit(model, dataset, optimizer)
      wall_time = time.time() - start_time

      examples_per_sec = num_batches * batch_size / wall_time
      self.report_benchmark(
          name="eager_train_%s" %
          ("gpu" if tfe.num_gpus() > 0 else "cpu"),
          iters=num_batches,
          extras={"examples_per_sec": examples_per_sec},
          wall_time=wall_time)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:30,代码来源:linear_regression_test.py

示例14: __init__

 def __init__(self, dh, dq, da, di, max_q, Nq, Na, cell='rnn',trainable_embeddings=True):
     self.dh = dh
     self.dq = dq
     self.da = da
     self.di = di
     self.max_q = max_q
     self.Nq = Nq
     self.Na = Na
     self.cell = cell
     
     with tf.device('/cpu:0'):
         self.qemb_W = tf.get_variable('qemb_w',
                                       initializer=tf.random_uniform([self.Nq, self.dq], -0.1, 0.1),
                                       trainable = trainable_embeddings)
     self.aemb_W = tf.get_variable(name='aemb_w',
                                   initializer=tf.random_uniform([self.dh, self.Na], -0.1, 0.1))
     self.aemb_b = tf.get_variable(name='aemb_b',
                                   initializer=tf.zeros([self.Na]))
     self.Wi = tf.get_variable(name='Wi', shape=[self.di, self.dq],
                               initializer=tf.contrib.layers.xavier_initializer())
     self.bi = tf.get_variable(name='bi',
                                   initializer=tf.zeros([self.dq]))
     
     if self.cell == 'rnn':
         self.recur = tf.nn.rnn_cell.RNNCell(self.dh)
     elif self.cell == 'lstm':
         self.recur = tf.nn.rnn_cell.LSTMCell(self.dh)
     elif self.cell == 'gru':
         self.recur = tf.nn.rnn_cell.GRUCell(self.dh)
     else:
         raise NotImplementedError
开发者ID:Hediby,项目名称:vanilla_vqa,代码行数:31,代码来源:vislstm.py

示例15: input_fn

  def input_fn(params):
    """Generated input_fn for the given epoch."""
    batch_size = (params["batch_size"] if is_training else
                  params["eval_batch_size"] or params["batch_size"])
    num_users = params["num_users"]
    num_items = params["num_items"]

    users = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_users)
    items = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                              maxval=num_items)

    if is_training:
      labels = tf.random_uniform([batch_size], dtype=tf.int32, minval=0,
                                 maxval=2)
      data = {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
      }, labels
    else:
      dupe_mask = tf.cast(tf.random_uniform([batch_size], dtype=tf.int32,
                                            minval=0, maxval=2), tf.bool)
      data = {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
          rconst.DUPLICATE_MASK: dupe_mask,
      }

    dataset = tf.data.Dataset.from_tensors(data).repeat(
        SYNTHETIC_BATCHES_PER_EPOCH)
    dataset = dataset.prefetch(32)
    return dataset
开发者ID:812864539,项目名称:models,代码行数:32,代码来源:data_preprocessing.py


注:本文中的tensorflow.random_uniform函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。