当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.parse_single_example函数代码示例

本文整理汇总了Python中tensorflow.parse_single_example函数的典型用法代码示例。如果您正苦于以下问题:Python parse_single_example函数的具体用法?Python parse_single_example怎么用?Python parse_single_example使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了parse_single_example函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: read_and_decode

def read_and_decode(filename, is_train):
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    _,serialized_example = reader.read(filename_queue)

    if is_train == True:
        features = tf.parse_single_example(serialized_example,
                                           features={
                                               "hat_label": tf.FixedLenFeature([], tf.int64),
                                               "hair_label": tf.FixedLenFeature([], tf.int64),
                                               "gender_label": tf.FixedLenFeature([], tf.int64),
                                               "top_label": tf.FixedLenFeature([], tf.int64),
                                               "down_label": tf.FixedLenFeature([], tf.int64),
                                               "shoes_label": tf.FixedLenFeature([], tf.int64),
                                               "bag_label": tf.FixedLenFeature([], tf.int64),
                                               "img_raw": tf.FixedLenFeature([], tf.string),
                                           })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [128, 256, 3])
	#image = Image.frombytes('RGB', (224, 224), img[0])
	img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
	#print(type(img))
	#img = np.asarray(img, dtype=np.uint8)
	#print(type(img))
	#tl.visualize.frame(I=img, second=5, saveable=False, name='frame', fig_idx=12836)

        hat_label = tf.cast(features['hat_label'], tf.int32)
        hair_label = tf.cast(features['hair_label'], tf.int32)
        gender_label = tf.cast(features['gender_label'], tf.int32)
        top_label = tf.cast(features['top_label'], tf.int32)
        down_label = tf.cast(features['down_label'], tf.int32)
        shoes_label = tf.cast(features['shoes_label'], tf.int32)
        bag_label = tf.cast(features['bag_label'], tf.int32)
        labels = {"hat":hat_label, "hair":hair_label, "gender":gender_label,
                  "top":top_label, "down":down_label, "shoes":shoes_label,
                  "bag":bag_label}

        return img, labels
    else:
        features = tf.parse_single_example(serialized_example,
                                           features={
                                               "img_raw": tf.FixedLenFeature([], tf.string),
                                           })
        img = tf.decode_raw(features['img_raw'], tf.uint8)
        img = tf.reshape(img, [128, 256, 3])
	img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
	#tl.visualize.frame(I=img, second=5, saveable=False, name='frame', fig_idx=12833)

        return img
开发者ID:gegetang,项目名称:TensorFlowLaboratory,代码行数:49,代码来源:data.py

示例2: parse_labeled_example

def parse_labeled_example(
    example_proto, view_index, preprocess_fn, image_attr_keys, label_attr_keys):
  """Parses a labeled test example from a specified view.

  Args:
    example_proto: A scalar string Tensor.
    view_index: Int, index on which view to parse.
    preprocess_fn: A function with the signature (raw_images, is_training) ->
      preprocessed_images, where raw_images is a 4-D float32 image `Tensor`
      of raw images, is_training is a Boolean describing if we're in training,
      and preprocessed_images is a 4-D float32 image `Tensor` holding
      preprocessed images.
    image_attr_keys: List of Strings, names for image keys.
    label_attr_keys: List of Strings, names for label attributes.
  Returns:
    data: A tuple of images, attributes and tasks `Tensors`.
  """
  features = {}
  for attr_key in image_attr_keys:
    features[attr_key] = tf.FixedLenFeature((), tf.string)
  for attr_key in label_attr_keys:
    features[attr_key] = tf.FixedLenFeature((), tf.int64)
  parsed_features = tf.parse_single_example(example_proto, features)
  image_only_keys = [i for i in image_attr_keys if 'image' in i]
  view_image_key = image_only_keys[view_index]
  image = preprocessing.decode_image(parsed_features[view_image_key])
  preprocessed = preprocess_fn(image, is_training=False)
  attributes = [parsed_features[k] for k in label_attr_keys]
  task = parsed_features['task']
  return tuple([preprocessed] + attributes + [task])
开发者ID:danabo,项目名称:models,代码行数:30,代码来源:data_providers.py

示例3: read_and_decode

def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
  serialized_example,
  # Defaults are not specified since both keys are required.
  features={
  'vector': tf.FixedLenFeature([], tf.string),
  'label': tf.FixedLenFeature([], tf.int64),
  })  
  
  
  
  # features = tf.parse_single_example(serialized_example, dense_keys=['vector', 'label'], dense_types=[tf.string, tf.int64])
  # Convert from a scalar string tensor (whose single string has
  # length tf_model.IMAGE_PIXELS) to a uint8 tensor with shape
  # [tf_model.IMAGE_PIXELS].
  image = tf.decode_raw(features['vector'], tf.float32)
  image.set_shape([FEATURE_DIMENSIONALITY])
  if FLAGS.transpose_input:
    image = tf.reshape(image, FEATURE_INPUT_SHAPE)
    image = tf.transpose(image, perm=[0,2,1])
    image = tf.reshape(image, [-1])

  # print("Image shape is %s" %(image.shape))
  # OPTIONAL: Could reshape into a 28x28 image and apply distortions
  # here.  Since we are not applying any distortions in this
  # example, and the next step expects the image to be flattened
  # into a vector, we don't bother.
  # Convert from [0, 255] -> [-0.5, 0.5] floats.
  # image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
  # Convert label from a scalar uint8 tensor to an int32 scalar.
  label = tf.cast(features['label'], tf.int32)
  return image, label
开发者ID:vmswork,项目名称:common,代码行数:34,代码来源:tf_inference_test.py

示例4: read_and_decode

def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      dense_keys=['image_raw', 'label'],
      # Defaults are not specified since both keys are required.
      dense_types=[tf.string, tf.int64])

  # Convert from a scalar string tensor (whose single string has
  # length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
  # [mnist.IMAGE_PIXELS].
  image = tf.decode_raw(features['image_raw'], tf.uint8)
  image.set_shape([mnist.IMAGE_PIXELS])

  # OPTIONAL: Could reshape into a 28x28 image and apply distortions
  # here.  Since we are not applying any distortions in this
  # example, and the next step expects the image to be flattened
  # into a vector, we don't bother.

  # Convert from [0, 255] -> [-0.5, 0.5] floats.
  image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

  # Convert label from a scalar uint8 tensor to an int32 scalar.
  label = tf.cast(features['label'], tf.int32)

  return image, label
开发者ID:0uMuMu0,项目名称:tensorflow-zh,代码行数:27,代码来源:fully_connected_reader.py

示例5: record_parser_fn

def record_parser_fn(value, is_training):
    """Parse an image record from `value`."""
    keys_to_features = {
          'width': tf.FixedLenFeature([], dtype=tf.int64, default_value=0),
          'height': tf.FixedLenFeature([], dtype=tf.int64, default_value=0),
          'image': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
          'label': tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
          'name': tf.FixedLenFeature([], dtype=tf.string, default_value='')
    }

    parsed = tf.parse_single_example(value, keys_to_features)

    image = tf.image.decode_image(tf.reshape(parsed['image'], shape=[]),
      FLAGS.image_channels)
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    
    bbox = tf.concat(axis=0, values=[ [[]], [[]], [[]], [[]] ])
    bbox = tf.transpose(tf.expand_dims(bbox, 0), [0, 2, 1])
    image = image_preprocess.preprocess_image(
        image=image,
        output_height=FLAGS.image_size,
        output_width=FLAGS.image_size,
        object_cover=0.0, 
        area_cover=0.05,
        is_training=is_training,
        bbox=bbox)

    label = tf.cast(tf.reshape(parsed['label'], shape=[]),dtype=tf.int32)
    label = tf.one_hot(label, FLAGS.class_num)    

    return image, label
开发者ID:YanhuaCheng,项目名称:tencent-ml-images,代码行数:31,代码来源:finetune.py

示例6: read_and_decode

def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        # Defaults are not specified since both keys are required.
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
            'label': tf.FixedLenFeature([], tf.int64),
            'height': tf.FixedLenFeature([], tf.int64),
            'width': tf.FixedLenFeature([], tf.int64),
            'depth': tf.FixedLenFeature([], tf.int64)
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    img_height = tf.cast(features['height'], tf.int32)
    img_width = tf.cast(features['width'], tf.int32)
    img_depth = tf.cast(features['depth'], tf.int32)
    # Convert label from a scalar uint8 tensor to an int32 scalar.
    label = tf.cast(features['label'], tf.int32)

    image.set_shape([IMG_PIXELS])
    image = tf.reshape(image, [IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])

    # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

    return image, label
开发者ID:ankurag12,项目名称:CIFAR-10,代码行数:28,代码来源:read_data.py

示例7: deserialize

  def deserialize(examples_serialized):
    """Called by Dataset.map() to convert batches of records to tensors."""
    features = tf.parse_single_example(examples_serialized, feature_map)
    users = tf.reshape(tf.decode_raw(
        features[movielens.USER_COLUMN], tf.int32), (batch_size,))
    items = tf.reshape(tf.decode_raw(
        features[movielens.ITEM_COLUMN], tf.uint16), (batch_size,))

    if params["use_tpu"] or params["use_xla_for_gpu"]:
      items = tf.cast(items, tf.int32)  # TPU and XLA disallows uint16 infeed.

    if not training:
      dupe_mask = tf.reshape(tf.cast(tf.decode_raw(
          features[rconst.DUPLICATE_MASK], tf.int8), tf.bool), (batch_size,))
      return {
          movielens.USER_COLUMN: users,
          movielens.ITEM_COLUMN: items,
          rconst.DUPLICATE_MASK: dupe_mask,
      }

    labels = tf.reshape(tf.cast(tf.decode_raw(
        features["labels"], tf.int8), tf.bool), (batch_size,))

    return {
        movielens.USER_COLUMN: users,
        movielens.ITEM_COLUMN: items,
    }, labels
开发者ID:812864539,项目名称:models,代码行数:27,代码来源:data_preprocessing.py

示例8: read_cifar10

def read_cifar10(filename_queue):
  """Reads and parses examples from CIFAR10 data files.

  Recommendation: if you want N-way read parallelism, call this function
  N times.  This will give you N independent Readers reading different
  files & positions within those files, which will give better mixing of
  examples.

  Args:
    filename_queue: A queue of strings with the filenames to read from.

  Returns:
    An object representing a single example, with the following fields:
      height: number of rows in the result (32)
      width: number of columns in the result (32)
      depth: number of color channels in the result (3)
      key: a scalar string Tensor describing the filename & record number
        for this example.
      label: an int32 Tensor with the label in the range 0..9.
      uint8image: a [height, width, depth] uint8 Tensor with the image data
  """

  class CIFAR10Record(object):
    pass
  result = CIFAR10Record()

  # Dimensions of the images in the CIFAR-10 dataset.
  # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
  # input format.
  label_bytes = 1  # 2 for CIFAR-100
  result.height = 256
  result.width = 256
  result.depth = 3
  image_bytes = result.height * result.width * result.depth
  # Every record consists of a label followed by the image, with a
  # fixed number of bytes for each.
  record_bytes = label_bytes + image_bytes

  # Read a record, getting filenames from the filename_queue.  No
  # header or footer in the CIFAR-10 format, so we leave header_bytes
  # and footer_bytes at their default of 0.
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)
  features = tf.parse_single_example(
      serialized_example,
      # Defaults are not specified since both keys are required.
      features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label': tf.FixedLenFeature([], tf.int64),
      })

  record_bytes = tf.decode_raw(features['image_raw'], tf.uint8)
  # depth_major = tf.reshape(record_bytes, [result.depth, result.height, result.width])
  # Convert from [depth, height, width] to [height, width, depth].
  result.uint8image =  tf.reshape(record_bytes, [result.height, result.width, result.depth])

  # The first bytes represent the label, which we convert from uint8->int32.
  result.label = tf.cast(features['label'], tf.int32)

  return result
开发者ID:jamesbondo,项目名称:video_face,代码行数:60,代码来源:face_input.py

示例9: read_and_preprocess

  def read_and_preprocess(example_data):
    """parses tfrecord and returns image, label.

    Args:
      example_data (str): tfrecord
    Returns:
      img, label
    """
    height = width = PATCH_SIZE(params)
    parsed = tf.parse_single_example(
        example_data, {
            'ref': tf.VarLenFeature(tf.float32),
            'ltg': tf.VarLenFeature(tf.float32),
            'has_ltg': tf.FixedLenFeature([], tf.int64, 1),
        })
    parsed['ref'] = _sparse_to_dense(parsed['ref'], height * width)
    parsed['ltg'] = _sparse_to_dense(parsed['ltg'], height * width)

    # keras wants labels to be float32
    label = tf.cast(
      tf.reshape(parsed['has_ltg'], shape=[]),
      dtype=tf.float32)
    print('shape of label {}'.format(label.shape))

    img = reshape_into_image(parsed, params)
    return img, label
开发者ID:kykrueger,项目名称:training-data-analyst,代码行数:26,代码来源:train_cnn.py

示例10: tfrecord_to_graph_ops

def tfrecord_to_graph_ops(filenames, num_epochs):
    file_queue = tf.train.string_input_producer(
        filenames, name='file_queue', num_epochs=num_epochs
    )
    reader = tf.TFRecordReader(
        options=tf.python_io.TFRecordOptions(
            compression_type=tf.python_io.TFRecordCompressionType.GZIP
        )
    )
    _, tfrecord = reader.read(file_queue)

    tfrecord_features = tf.parse_single_example(
        tfrecord,
        features={
            'images': tf.FixedLenFeature([], tf.string),
            'labels': tf.FixedLenFeature([], tf.string),
        },
        name='data'
    )
    tfeat = tf.decode_raw(tfrecord_features['images'], tf.uint8)
    # note, 'NCHW' is only supported on GPUs, so use 'NHWC'...
    tfeat = tf.reshape(tfeat, [-1, 28, 28, 1])
    ttarg = tf.decode_raw(tfrecord_features['labels'], tf.uint8)
    ttarg = tf.one_hot(indices=ttarg, depth=10, on_value=1, off_value=0)
    return tfeat, ttarg
开发者ID:gnperdue,项目名称:RandomData,代码行数:25,代码来源:fashion_hdf5_to_tfrec.py

示例11: getImage

def getImage(filenames):
	# convert filenames to a queue for an input pipeline.
	filenameQ = tf.train.string_input_producer(filenames,num_epochs=None)

	# object to read records
	recordReader = tf.TFRecordReader()

	# read the full set of features for a single example
	key, fullExample = recordReader.read(filenameQ)

	# parse the full example into its' component features.
	features = tf.parse_single_example(
        fullExample,
        features={
            'image/height': tf.FixedLenFeature([], tf.int64),
            'image/width': tf.FixedLenFeature([], tf.int64),
            'image/depth': tf.FixedLenFeature([], tf.int64),
            'image/class/label': tf.FixedLenFeature([],tf.int64),
            'image/class/text': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
            'image/filename': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
            'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value='')
        })

	label = features['image/class/label']
	image_buffer = features['image/encoded']

	image = tf.decode_raw(image_buffer, tf.float32)
	image = tf.reshape(image, tf.stack([FLAGS.width*FLAGS.height*FLAGS.depth]))

	label=tf.stack(tf.one_hot(label-1, nLabel))
	return label, image
开发者ID:chopin111,项目名称:Magisterka,代码行数:31,代码来源:simpleCNN_MRI.py

示例12: _test

  def _test(self, kwargs, expected_values=None, expected_err_re=None):
    with self.test_session() as sess:
      # Pull out some keys to check shape inference
      dense_keys = kwargs["dense_keys"] if "dense_keys" in kwargs else []
      sparse_keys = kwargs["sparse_keys"] if "sparse_keys" in kwargs else []
      dense_shapes = kwargs["dense_shapes"] if "dense_shapes" in kwargs else []

      # Returns dict w/ Tensors and SparseTensors
      out = tf.parse_single_example(**kwargs)

      # Check shapes
      self.assertEqual(len(dense_keys), len(dense_shapes))
      for (k, s) in zip(dense_keys, dense_shapes):
        self.assertEqual(tuple(out[k].get_shape()), s)
      for k in sparse_keys:
        self.assertEqual(tuple(out[k].indices.get_shape().as_list()), (None, 1))
        self.assertEqual(tuple(out[k].values.get_shape().as_list()), (None,))
        self.assertEqual(tuple(out[k].shape.get_shape().as_list()), (1,))

      # Check values
      result = flatten_values_tensors_or_sparse(out.values())  # flatten values
      if expected_err_re is None:
        tf_result = sess.run(result)
        _compare_output_to_expected(self, out, expected_values, tf_result)
      else:
        with self.assertRaisesOpError(expected_err_re):
          sess.run(result)
开发者ID:barongeng,项目名称:tensorflow,代码行数:27,代码来源:parsing_ops_test.py

示例13: _input_fn

  def _input_fn():
    with tf.name_scope('input'):
        filename_queue = tf.train.string_input_producer(
            filenames, num_epochs=num_epochs)

        reader = tf.TFRecordReader()
        _, serialized_example = reader.read_up_to(filename_queue)

        features = tf.parse_single_example(
            serialized_examples,
            {
                'words': tf.VarLenFeature(tf.string),
                'subreddit': tf.FixedLenFeature([1], tf.int64)
            }
        )
        padded_words = tf.sparse_to_dense(
            features['words'].indices,
            [sentence_length],
            features['words'].values,
            default_value='UNK'
        )
        word_indices = tf.string_to_hash_bucket_fast(
            padded_words,
            vocab_size)

        sentences, subreddits = tf.train.shuffle_batch(
            [word_indices, features['subreddit']],
            batch_size,
            capacity=1000 + 3 * batch_size,
            min_after_dequeue=1000,
            enqueue_many=False
        )
    return sentences, subreddits
开发者ID:amygdala,项目名称:tensorflow-workshop,代码行数:33,代码来源:model.py

示例14: read_and_decode

def read_and_decode(filename_queue):
	reader = tf.TFRecordReader()
	_, serialized_example = reader.read(filename_queue)
	features = tf.parse_single_example(
		serialized_example,
		# Defaults are not specified since both keys are required.
		features={
			'image_raw': tf.FixedLenFeature([], tf.string),
			'label':     tf.FixedLenFeature([], tf.int64),
		})
	
	# Convert from a scalar string tensor (whose single string has
	# length mnist.IMAGE_PIXELS) to a uint8 tensor with shape
	# [mnist.IMAGE_PIXELS].
	image = tf.decode_raw(features['image_raw'], tf.uint8)
	image.set_shape([57600])

	# OPTIONAL: Could reshape into a 28x28 image and apply distortions
	# here.  Since we are not applying any distortions in this
	# example, and the next step expects the image to be flattened
	# into a vector, we don't bother.

	# Convert from [0, 255] -> [-0.5, 0.5] floats.
	image = tf.cast(image, tf.float32) * (1. / 255) - 0.5

	# Convert label from a scalar uint8 tensor to an int32 scalar.
	#label = tf.cast(features['label'], tf.int32) <-- placeholder instead

	return tf.reshape(image, [160, 120, 3]), tf.placeholder(tf.int32) # TODO doublecheck this
开发者ID:RyBo,项目名称:CarHawk,代码行数:29,代码来源:hawknet.py

示例15: _parse_example_proto

def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

  The dataset contains serialized Example protocol buffers.
  The Example proto is expected to contain features named
  image/encoded (a JPEG-encoded string) and image/class/label (int)

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
    label: Tensor tf.int64 containing the label.
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                              default_value=-1)
  }

  features = tf.parse_single_example(example_serialized, feature_map)

  return features['image/encoded'], features['image/class/label']
开发者ID:hoysasulee,项目名称:models,代码行数:26,代码来源:imagenet_main.py


注:本文中的tensorflow.parse_single_example函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。