本文整理汇总了Python中tensorflow.ones函数的典型用法代码示例。如果您正苦于以下问题:Python ones函数的具体用法?Python ones怎么用?Python ones使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ones函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
def main():
tf.set_random_seed(10)
with tf.Session() as sess:
rnn_cell = tf.nn.rnn_cell.LSTMCell(10)
# defining initial state
initial_state = rnn_cell.zero_state(4, dtype=tf.float32)
inputs = tf.Variable(tf.random_uniform(shape = (4, 30, 100)), name='input')
inputs = tf.identity(inputs, "input_node")
# 'state' is a tensor of shape [batch_size, cell_state_size]
outputs, state = tf.nn.dynamic_rnn(rnn_cell, inputs, initial_state=initial_state, dtype=tf.float32)
y1 = tf.identity(outputs, 'outputs')
y2 = tf.identity(state, 'state')
t1 = tf.ones([4, 30, 10])
t2 = tf.ones([4, 10])
loss = tf.reduce_sum((y1 - t1) * (y1 - t1)) + tf.reduce_sum((y2 - t2) * (y2 - t2))
tf.identity(loss, name = "lstm_loss")
# tf.summary.FileWriter('/tmp/log', tf.get_default_graph())
net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(','))
run_model(net_outputs, argv[1], None, argv[3] == 'True')
示例2: bn_layer
def bn_layer(inputs,is_training,name='BatchNorm',moving_decay=0.9,eps=1e-5):
shape = inputs.shape
assert len(shape) in [2,4]
param_shape = shape[-1]
gamma = tf.Variable(tf.ones(param_shape), name='gamma')
beta = tf.Variable(tf.zeros(param_shape), name='beta')
mean = tf.Variable(tf.ones(param_shape), trainable=False, name='mean')
var = tf.Variable(tf.ones(param_shape), trainable=False, name='var')
tf.add_to_collection('l2_losses', tf.contrib.layers.l2_regularizer(lambda1)(gamma))
tf.add_to_collection('l2_losses', tf.contrib.layers.l2_regularizer(lambda1)(beta))
tf.add_to_collection('l2_losses', tf.contrib.layers.l2_regularizer(lambda1)(mean))
tf.add_to_collection('l2_losses', tf.contrib.layers.l2_regularizer(lambda1)(var))
if is_training == True:
batch_mean, batch_var = tf.nn.moments(inputs,[0,1,2],name='moments')
mean = tf.assign(mean, batch_mean)
var = tf.assign(var, batch_var)
return tf.nn.batch_normalization(inputs,batch_mean+mean*1e-10,batch_var+var*1e-10,gamma,beta,eps)
else:
return tf.nn.batch_normalization(inputs,mean,var,gamma,beta,eps)
示例3: get_idx_map
def get_idx_map(shape):
"""Get index map for a image.
Args:
shape: [B, T, H, W] or [B, H, W]
Returns:
idx: [B, T, H, W, 2], or [B, H, W, 2]
"""
s = shape
ndims = tf.shape(s)
wdim = ndims - 1
hdim = ndims - 2
idx_shape = tf.concat(0, [s, tf.constant([1])])
ones_h = tf.ones(hdim - 1, dtype='int32')
ones_w = tf.ones(wdim - 1, dtype='int32')
h_shape = tf.concat(0, [ones_h, tf.constant([-1]), tf.constant([1, 1])])
w_shape = tf.concat(0, [ones_w, tf.constant([-1]), tf.constant([1])])
idx_y = tf.zeros(idx_shape, dtype='float')
idx_x = tf.zeros(idx_shape, dtype='float')
h = tf.slice(s, ndims - 2, [1])
w = tf.slice(s, ndims - 1, [1])
idx_y += tf.reshape(tf.to_float(tf.range(h[0])), h_shape)
idx_x += tf.reshape(tf.to_float(tf.range(w[0])), w_shape)
idx = tf.concat(ndims[0], [idx_y, idx_x])
return idx
示例4: _make_evaluation_dict
def _make_evaluation_dict(self, resized_groundtruth_masks=False):
input_data_fields = fields.InputDataFields
detection_fields = fields.DetectionResultFields
image = tf.zeros(shape=[1, 20, 20, 3], dtype=tf.uint8)
key = tf.constant('image1')
detection_boxes = tf.constant([[[0., 0., 1., 1.]]])
detection_scores = tf.constant([[0.8]])
detection_classes = tf.constant([[0]])
detection_masks = tf.ones(shape=[1, 1, 20, 20], dtype=tf.float32)
num_detections = tf.constant([1])
groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
groundtruth_classes = tf.constant([1])
groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
if resized_groundtruth_masks:
groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
detections = {
detection_fields.detection_boxes: detection_boxes,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks,
detection_fields.num_detections: num_detections
}
groundtruth = {
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
}
return eval_util.result_dict_for_single_example(image, key, detections,
groundtruth)
示例5: test_sample_mvn
def test_sample_mvn(session_tf, cov_structure, num_samples):
"""
Draws 10,000 samples from a distribution
with known mean and covariance. The test checks
if the mean and covariance of the samples is
close to the true mean and covariance.
"""
N, D = 10000, 2
means = tf.ones((N, D), dtype=float_type)
if cov_structure == "full":
covs = tf.eye(D, batch_shape=[N], dtype=float_type)
elif cov_structure == "diag":
covs = tf.ones((N, D), dtype=float_type)
samples = _sample_mvn(means, covs, cov_structure, num_samples=num_samples)
value = session_tf.run(samples)
if num_samples is None:
assert value.shape == (N, D)
else:
assert value.shape == (num_samples, N, D)
value = value.reshape(-1, D)
samples_mean = np.mean(value, axis=0)
samples_cov = np.cov(value, rowvar=False)
np.testing.assert_array_almost_equal(samples_mean, [1., 1.], decimal=1)
np.testing.assert_array_almost_equal(samples_cov, [[1., 0.], [0., 1.]], decimal=1)
示例6: _test_logpdf_scalar
def _test_logpdf_scalar(scalar):
x = tf.constant(scalar)
val_true = stats.norm.logpdf(scalar)
_assert_eq(norm.logpdf(x), val_true)
_assert_eq(norm.logpdf(x, tf.zeros([1]), tf.constant(1.0)), val_true)
_assert_eq(norm.logpdf(x, tf.zeros([1]), tf.ones([1])), val_true)
_assert_eq(norm.logpdf(x, tf.zeros([1]), tf.diag(tf.ones([1]))), val_true)
示例7: testDtype
def testDtype(self):
with self.test_session():
d = tf.fill([2, 3], 12., name="fill")
self.assertEqual(d.get_shape(), [2, 3])
# Test default type for both constant size and dynamic size
z = tf.ones([2, 3])
self.assertEqual(z.dtype, tf.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
z = tf.ones(tf.shape(d))
self.assertEqual(z.dtype, tf.float32)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
# Test explicit type control
for dtype in (tf.float32, tf.float64, tf.int32,
tf.uint8, tf.int16, tf.int8,
tf.complex64, tf.complex128, tf.int64, tf.bool):
z = tf.ones([2, 3], dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
z = tf.ones(tf.shape(d), dtype=dtype)
self.assertEqual(z.dtype, dtype)
self.assertEqual([2, 3], z.get_shape())
self.assertAllEqual(z.eval(), np.ones([2, 3]))
示例8: __init__
def __init__(self, num_layers, num_units, batch_size, input_size, keep_prob=1.0):
self.num_layers = num_layers
self.grus = []
self.inits = []
self.dropout_mask = []
for layer in range(num_layers):
input_size_ = input_size if layer == 0 else 2 * num_units
gru_fw = tf.nn.rnn_cell.MultiRNNCell([
tf.contrib.cudnn_rnn.CudnnCompatibleGRUCell(num_units=num_units)])
gru_bw = tf.nn.rnn_cell.MultiRNNCell([
tf.contrib.cudnn_rnn.CudnnCompatibleGRUCell(num_units=num_units)])
init_fw = tf.Variable(tf.zeros([num_units]))
init_fw = tf.expand_dims(tf.tile(tf.expand_dims(init_fw, axis=0), [batch_size, 1]), axis=0)
init_bw = tf.Variable(tf.zeros([num_units]))
init_bw = tf.expand_dims(tf.tile(tf.expand_dims(init_bw, axis=0), [batch_size, 1]), axis=0)
mask_fw = tf.nn.dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
keep_prob=keep_prob)
mask_bw = tf.nn.dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
keep_prob=keep_prob)
self.grus.append((gru_fw, gru_bw,))
self.inits.append((init_fw, init_bw,))
self.dropout_mask.append((mask_fw, mask_bw,))
示例9: benchmarkCudnnLSTMTraining
def benchmarkCudnnLSTMTraining(self):
test_configs = self._GetTestConfig()
for config_name, config in test_configs.items():
config = test_configs[config_name]
num_layers = config["num_layers"]
num_units = config["num_units"]
batch_size = config["batch_size"]
seq_length = config["seq_length"]
with tf.Graph().as_default(), tf.device("/gpu:0"):
model = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers, num_units, num_units)
params_size_t = model.params_size()
input_data = tf.Variable(tf.ones([seq_length, batch_size, num_units]))
input_h = tf.Variable(tf.ones([num_layers, batch_size, num_units]))
input_c = tf.Variable(tf.ones([num_layers, batch_size, num_units]))
params = tf.Variable(tf.ones([params_size_t]), validate_shape=False)
output, output_h, output_c = model(
is_training=True,
input_data=input_data,
input_h=input_h,
input_c=input_c,
params=params)
all_grads = tf.gradients([output, output_h, output_c],
[params, input_data, input_h, input_c])
training_op = tf.group(*all_grads)
self._BenchmarkOp(training_op, "cudnn_lstm %s %s" %
(config_name, self._GetConfigDesc(config)))
示例10: test_horovod_broadcast
def test_horovod_broadcast(self):
"""Test that the broadcast correctly broadcasts 1D, 2D, 3D tensors."""
hvd.init()
rank = hvd.rank()
size = hvd.size()
# This test does not apply if there is only one worker.
if size == 1:
return
with self.test_session() as session:
dtypes = [tf.uint8, tf.int8, tf.uint16, tf.int16,
tf.int32, tf.int64, tf.float32, tf.float64,
tf.bool]
dims = [1, 2, 3]
root_ranks = list(range(size))
for dtype, dim, root_rank in itertools.product(dtypes, dims, root_ranks):
try:
tensor = tf.ones([17] * dim) * rank
root_tensor = tf.ones([17] * dim) * root_rank
if dtype == tf.bool:
tensor = tensor % 2
root_tensor = root_tensor % 2
tensor = tf.cast(tensor, dtype=dtype)
root_tensor = tf.cast(root_tensor, dtype=dtype)
broadcasted_tensor = hvd.broadcast(tensor, root_rank)
self.assertTrue(
session.run(tf.reduce_all(tf.equal(
tf.cast(root_tensor, tf.int32), tf.cast(broadcasted_tensor, tf.int32)))),
"hvd.broadcast produces incorrect broadcasted tensor")
except Exception:
import traceback
traceback.print_exc()
示例11: _tf_loss
def _tf_loss(self, sim, sim_emb):
"""Define loss"""
if self.use_max_sim_neg:
max_sim_neg = tf.reduce_max(sim[:, 1:], -1)
loss = tf.reduce_mean(tf.maximum(0., self.mu_pos - sim[:, 0]) +
tf.maximum(0., self.mu_neg + max_sim_neg))
else:
# create an array for mu
mu = self.mu_neg * np.ones(self.num_neg + 1)
mu[0] = self.mu_pos
factors = tf.concat([-1 * tf.ones([1, 1]),
tf.ones([1, tf.shape(sim)[1] - 1])], 1)
max_margin = tf.maximum(0., mu + factors * sim)
loss = tf.reduce_mean(tf.reduce_sum(max_margin, -1))
max_sim_emb = tf.maximum(0., tf.reduce_max(sim_emb, -1))
loss = (loss +
# penalize max similarity between intent embeddings
tf.reduce_mean(max_sim_emb) * self.C_emb +
# add regularization losses
tf.losses.get_regularization_loss())
return loss
示例12: c_body
def c_body(c, pa):
# Zeroing predictions below threshold
with tf.variable_scope('bboxes_c_select', reuse=True):
c_scores = b_scores[:, c]
c_fmask = tf.cast(tf.greater(c_scores, confidence_threshold), scores.dtype)
c_scores = c_scores * c_fmask
c_bboxes = b_bboxes * tf.expand_dims(c_fmask, axis=-1)
# Apply NMS
with tf.variable_scope('bboxes_c_nms', reuse=True):
c_indices = tf.image.non_max_suppression(c_bboxes, c_scores, top_k, nms_threshold)
size = tf.size(c_indices)
c_batch_ = tf.to_float(b) * tf.ones(shape=[top_k, 1], dtype=tf.float32) # len(indices) x 1
c_labels = tf.to_float(c) * tf.ones(shape=[top_k, 1], dtype=tf.float32) # len(indices) x 1
extra_size = top_k - size
c_scores = tf.expand_dims(tf.gather(c_scores, c_indices), axis=-1) # len(indices) x 1
empty_c_scores = tf.zeros([extra_size, 1], dtype=tf.float32)
c_scores = tf.concat([c_scores, empty_c_scores], axis=0)
c_bboxes = tf.gather(c_bboxes, c_indices) # len(indices) x 4
empty_c_bboxes = tf.zeros([extra_size, 4], dtype=tf.float32)
c_bboxes = tf.concat([c_bboxes, empty_c_bboxes], axis=0)
c_predictions = tf.concat([c_batch_, c_labels, c_scores, c_bboxes], axis=1) # len(indices) x 7
return c + 1, pa.write(index=c - 1, value=c_predictions)
示例13: __call__
def __call__(self, inputs, states, scope=None):
with tf.variable_scope(
scope or type(self).__name__,
initializer=tf.random_normal_initializer(stddev=0.01)):
# get the tensor
if self._separate_pad:
t_shape = [self._num_outputs,
self._num_outputs,
self._num_inputs]
vec_a = inputs
vec_b = states
else:
t_shape = [self._num_outputs+1,
self._num_outputs,
self._num_inputs+1]
vec_a = tf.concat(
axis=1, values=[inputs, tf.ones([inputs.get_shape()[0].value, 1])])
vec_b = tf.concat(
axis=1, values=[inputs, tf.ones([inputs.get_shape()[0].value, 1])])
tensor = get_tt_3_tensor(t_shape, self._ranks, name='W')
result = bilinear_product_tt_3(vec_a, tensor, vec_b)
if self._separate_pad:
# TODO possible weightnorm
D = tf.get_variable('D', [self._num_inputs, self._num_outputs],
initializer=tf.uniform_unit_scaling_initializer(1.2))
E = tf.get_variable('E', [self._num_outputs, self._num_outputs],
initializer=tf.uniform_unit_scaling_initializer(1.2))
b = tf.get_variable('b', [self._num_outputs],
initializer=tf.constant_initializer(0.0))
z = tf.nn.bias_add(tf.matmul(inputs, D) + tf.matmul(states, E), b)
result = result + z
result = self._nonlin(result)
return result, result
示例14: decoder_fn
def decoder_fn(time, cell_state, cell_input, cell_output, context_state):
with tf.name_scope(name, "simple_decoder_fn_inference",
[time, cell_state, cell_input, cell_output,
context_state]):
if cell_input is not None:
raise ValueError("Expected cell_input to be None, but saw: %s" %
cell_input)
if cell_output is None:
# invariant that this is time == 0
next_input_id = tf.ones([batch_size], dtype=dtype) * (
start_of_sequence_id)
done = tf.zeros([batch_size], dtype=tf.bool)
cell_state = encoder_state
cell_output = tf.zeros([cell_size],
dtype=tf.float32)
else:
softmax_output = output_fn(cell_output)
if sample:
next_input_id = tf.squeeze(tf.multinomial(softmax_output, 1), 1)
else:
next_input_id = tf.argmax(softmax_output, 1)
next_input_id = tf.cast(next_input_id, dtype=dtype)
done = tf.equal(next_input_id, end_of_sequence_id)
next_input = tf.gather(embeddings, next_input_id)
# if time > maxlen, return all true vector
done = tf.cond(
tf.greater(time, maximum_length),
lambda: tf.ones([batch_size], dtype=tf.bool),
lambda: done)
return (done, cell_state, next_input, next_input_id, context_state)
示例15: _testParamShapes
def _testParamShapes(self, desired_shape):
tn_param_shapes = tfd.TruncatedNormal.param_shapes(desired_shape)
# Check the shapes by comparison with the untruncated Normal.
n_param_shapes = tfd.Normal.param_shapes(desired_shape)
self.assertAllEqual(
self.evaluate(tn_param_shapes["loc"]),
self.evaluate(n_param_shapes["loc"]))
self.assertAllEqual(
self.evaluate(tn_param_shapes["scale"]),
self.evaluate(n_param_shapes["scale"]))
self.assertAllEqual(
self.evaluate(tn_param_shapes["low"]),
self.evaluate(n_param_shapes["loc"]))
self.assertAllEqual(
self.evaluate(tn_param_shapes["high"]),
self.evaluate(n_param_shapes["loc"]))
loc = tf.zeros(tn_param_shapes["loc"])
scale = tf.ones(tn_param_shapes["scale"])
high = tf.ones(tn_param_shapes["high"])
low = tf.zeros(tn_param_shapes["low"])
sample_shape = self.evaluate(
tf.shape(
tfd.TruncatedNormal(loc=loc, scale=scale, low=low,
high=high).sample()))
self.assertAllEqual(desired_shape, sample_shape)