当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.negative函数代码示例

本文整理汇总了Python中tensorflow.negative函数的典型用法代码示例。如果您正苦于以下问题:Python negative函数的具体用法?Python negative怎么用?Python negative使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了negative函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_top_nearest_neigbors

def get_top_nearest_neigbors(num_generated, nearneig, real_features_hdf5, gen_features_hdf5, maximum=False, random_select=False, save_path=None):

    real_img_hdf5 = real_features_hdf5.replace('_features_', '_images_')
    gen_img_hdf5 = gen_features_hdf5.replace('_features_', '_images_')

    real_features_file = h5py.File(real_features_hdf5, 'r')
    gen_features_file = h5py.File(gen_features_hdf5, 'r')
    real_img_file = h5py.File(real_img_hdf5, 'r')
    gen_img_file = h5py.File(gen_img_hdf5, 'r')

    real_features = real_features_file['features']
    gen_features = gen_features_file['features']
    real_img = real_img_file['images']
    gen_img = gen_img_file['images']

    with tf.Session() as sess:
        real_features = tf.constant(np.array(real_features), dtype=tf.float32)
        gen_features = tf.constant(np.array(gen_features), dtype=tf.float32)

        # Get Nearest Neighbors for all generated images.
        gen_real_distances = tf.sqrt(tf.abs(euclidean_distance(gen_features, real_features)))
        neg = tf.negative(gen_real_distances)
        neg_s_distances, s_indices = tf.math.top_k(input=neg, k=nearneig, sorted=True)
        s_distances = tf.negative(neg_s_distances)


        # Getting the top smallest distances between Generated and Real images.
        neg_s_distances1, s_indices1 = tf.math.top_k(input=neg, k=1, sorted=True)
        neg_s_distances1 = tf.transpose(neg_s_distances1)
        if not random_select:
            if maximum:
                neg_s_distances1 = tf.negative(neg_s_distances1)
            neg_s_distances1, s_indices1 = tf.math.top_k(input=neg_s_distances1, k=num_generated, sorted=True)
            s_indices1 = tf.transpose(s_indices1)
            s_indices1 = s_indices1.eval()
        else:
            lin = list(range(int(gen_real_distances.shape[0])))
            random.shuffle(lin)
            s_indices1 = np.zeros((num_generated,1), dtype=np.int8)
            s_indices1[:, 0] = lin[:num_generated]
            
        s_indices = s_indices.eval()
        s_distances = s_distances.eval()
        # For the images with top smallest distances, show nearest neighbors.
        height, width, channels = real_img.shape[1:]
        neighbors = dict()
        grid = np.zeros((num_generated*height, (nearneig+1)*width, channels))
        for i, ind in enumerate(s_indices1):
            ind = ind[0]
            total = gen_img[ind]
            neighbors[ind] = list() 
            for j in range(nearneig):
                neighbors[ind].append((s_indices[ind,j], s_distances[ind,j]))
                real = real_img[s_indices[ind,j]]/255.
                total = np.concatenate([total, real], axis=1)
            grid[i*height:(i+1)*height, :, :] = total
        plt.imshow(grid)
        if save_path is not None:
            plt.imsave(save_path, grid)
        return neighbors
开发者ID:AdalbertoCq,项目名称:Pathology-GAN,代码行数:60,代码来源:tools.py

示例2: logG

def logG(x, y, theta):
    fv = tff(theta,y)
    gv = tfg(theta,y)
    mu = tf.add(y,tf.multiply(fv,gl.h))
    pr = tf.subtract(x,mu)
    pr2 = tf.square(pr)
    gv2 = tf.square(gv)
    my2 = tf.constant(2.0,dtype=gl.myftype)
    mypi = tf.constant(np.pi,dtype=gl.myftype)
    lgp1 = tf.negative(tf.divide(tf.log(tf.multiply(my2*mypi*gl.h,gv2)),my2))
    lgp2 = tf.negative(tf.divide(pr2,tf.multiply(my2*gl.h,gv2)))
    lg = tf.add(lgp1,lgp2)        
    return lg
开发者ID:hbhat4000,项目名称:sdeinference,代码行数:13,代码来源:tfdtqem2.py

示例3: __init__

    def __init__(self, product_size, embedding_size, batch_size):
        self.batch_size = batch_size
        self.graph = tf.Graph()

        with self.graph.as_default():
            self.train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
            self.train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])

            with tf.device('/cpu:0'):
                embeddings = tf.Variable(tf.random_uniform([product_size, embedding_size], -1.0, 1.0))
                embed = tf.nn.embedding_lookup(embeddings, self.train_inputs)

                output_embed = tf.nn.embedding_lookup(embeddings, self.train_labels)

            weights = tf.Variable(tf.random_normal([embedding_size, embedding_size]))
            bias = tf.Variable(tf.random_normal([embedding_size]))
            output_layer = tf.matmul(embed, weights) + bias

            self.loss = tf.reduce_sum(tf.abs(tf.add(output_layer, tf.negative(output_embed))), reduction_indices=1)
            self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(self.loss)

            norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
            self.normalized_embeddings = embeddings / norm

            self.init = tf.initialize_all_variables()
开发者ID:yaoyaowd,项目名称:tensorflow_demo,代码行数:25,代码来源:nn_knn.py

示例4: test_all

 def test_all(self):
     with self.test_context() as session:
         models = self.prepare()
         likelihoods = []
         for m in models:
             opt = gpflow.train.ScipyOptimizer()
             opt.minimize(m, maxiter=300)
             neg_obj = tf.negative(m.objective)
             likelihoods.append(session.run(neg_obj).squeeze())
         assert_allclose(likelihoods, likelihoods[0], rtol=1e-6)
         variances, lengthscales = [], []
         for m in models:
             if hasattr(m.kern, 'rbf'):
                 variances.append(m.kern.rbf.variance.read_value())
                 lengthscales.append(m.kern.rbf.lengthscales.read_value())
             else:
                 variances.append(m.kern.variance.read_value())
                 lengthscales.append(m.kern.lengthscales.read_value())
         variances, lengthscales = np.array(variances), np.array(lengthscales)
         assert_allclose(variances, variances[0], 1e-5)
         assert_allclose(lengthscales, lengthscales.mean(), 1e-4)
         mu0, var0 = models[0].predict_y(self.Xtest)
         for i, m in enumerate(models[1:]):
             mu, var = m.predict_y(self.Xtest)
             assert_allclose(mu, mu0, 1e-3)
             assert_allclose(var, var0, 1e-4)
开发者ID:sanket-kamthe,项目名称:GPflow,代码行数:26,代码来源:test_method_equivalence.py

示例5: build_graph

    def build_graph(self, image_pos):
        image_pos = image_pos / 128.0 - 1

        z = tf.random_normal([self.batch, self.zdim], name='z_train')
        z = tf.placeholder_with_default(z, [None, self.zdim], name='z')

        with argscope([Conv2D, Conv2DTranspose, FullyConnected],
                      kernel_initializer=tf.truncated_normal_initializer(stddev=0.02)):
            with tf.variable_scope('gen'):
                image_gen = self.generator(z)
            tf.summary.image('generated-samples', image_gen, max_outputs=30)

            alpha = tf.random_uniform(shape=[self.batch, 1, 1, 1],
                                      minval=0., maxval=1., name='alpha')
            interp = image_pos + alpha * (image_gen - image_pos)

            with tf.variable_scope('discrim'):
                vecpos = self.discriminator(image_pos)
                vecneg = self.discriminator(image_gen)
                vec_interp = self.discriminator(interp)

        # the Wasserstein-GAN losses
        self.d_loss = tf.reduce_mean(vecneg - vecpos, name='d_loss')
        self.g_loss = tf.negative(tf.reduce_mean(vecneg), name='g_loss')

        # the gradient penalty loss
        gradients = tf.gradients(vec_interp, [interp])[0]
        gradients = tf.sqrt(tf.reduce_sum(tf.square(gradients), [1, 2, 3]))
        gradients_rms = symbolic_functions.rms(gradients, 'gradient_rms')
        gradient_penalty = tf.reduce_mean(tf.square(gradients - 1), name='gradient_penalty')
        add_moving_summary(self.d_loss, self.g_loss, gradient_penalty, gradients_rms)

        self.d_loss = tf.add(self.d_loss, 10 * gradient_penalty)

        self.collect_variables()
开发者ID:quanlzheng,项目名称:tensorpack,代码行数:35,代码来源:Improved-WGAN.py

示例6: cross_entropy_loss

def cross_entropy_loss(y, yhat):
    """
    Compute the cross entropy loss in tensorflow.
    The loss should be summed over the current minibatch.

    y is a one-hot tensor of shape (n_samples, n_classes) and yhat is a tensor
    of shape (n_samples, n_classes). y should be of dtype tf.int32, and yhat should
    be of dtype tf.float32.

    The functions tf.to_float, tf.reduce_sum, and tf.log might prove useful. (Many
    solutions are possible, so you may not need to use all of these functions).

    Note: You are NOT allowed to use the tensorflow built-in cross-entropy
                functions.

    Args:
        y:    tf.Tensor with shape (n_samples, n_classes). One-hot encoded.
        yhat: tf.Tensorwith shape (n_sample, n_classes). Each row encodes a
                    probability distribution and should sum to 1.
    Returns:
        out:  tf.Tensor with shape (1,) (Scalar output). You need to construct this
                    tensor in the problem.
    """

    ### YOUR CODE HERE
    l_yhat = tf.log(yhat)                           # log yhat
    product = tf.multiply(tf.to_float(y), l_yhat)   # multiply element-wise
    out = tf.negative(tf.reduce_sum(product))       # negative summation to scalar
    ### END YOUR CODE

    return out
开发者ID:ziyaochen,项目名称:CS224n,代码行数:31,代码来源:q1_softmax.py

示例7: gabor

def gabor(n_values=32, sigma=1.0, mean=0.0):
	x = tf.linspace(-3.0, 3.0, n_values)
	z = (tf.exp(tf.negative(tf.pow(x - mean, 2.0)/ (2.0 * tf.pow(sigma, 2.0)))) * (1.0 / (sigma * tf.sqrt(2.0 * 3.145))))
	gauss_kernel = tf.matmul(tf.reshape(z, [n_values, 1]), tf.reshape(z,[1, n_values]))
	x = tf.reshape(tf.sin(tf.linspace(-3.0, 3.0, n_values)), [n_values, 1])
	y = tf.reshape(tf.ones_like(x), [1, n_values])
	gabor_kernel = tf.multiply(tf.matmul(x ,y), gauss_kernel)
	return gabor_kernel
开发者ID:stonecoder19,项目名称:machine_learning,代码行数:8,代码来源:basics_tensor.py

示例8: build_graph

    def build_graph(self, graph):
        self.xtr = tf.placeholder(dtype=tf.float32, shape=[None, 784])
        self.xte = tf.placeholder(dtype=tf.float32, shape=[784])    # one vector compares with all in self.xtr
        self.distance = tf.reduce_sum(tf.abs(tf.add(self.xtr, tf.negative(self.xte))), reduction_indices=1)
        self.pred = tf.argmin(self.distance, 0)

        self.global_step_t = tf.Variable(0, trainable=False, name='global_step_t')

        return graph
开发者ID:jamescfli,项目名称:PythonTest,代码行数:9,代码来源:make_nearest_neighbour_model.py

示例9: integrandmat

def integrandmat(inx, iny, th):
    my2 = tf.constant(2.0,gl.myftype)
    tfmu = tf.add(iny,tf.multiply(tff(theta=th,x=iny),gl.h))
    tfsig = tf.multiply(tf.sqrt(gl.h),tfg(theta=th,x=iny))
    tfc0 = tf.reciprocal(tf.multiply(tf.sqrt(tf.multiply(my2,tf.constant(np.pi,dtype=gl.myftype))),tfsig))
    tfnumer = tf.negative(tf.square(tf.subtract(inx,tfmu)))
    tfdenom = tf.multiply(my2,tf.square(tfsig))
    tfprop = tf.multiply(tfc0,tf.exp(tf.divide(tfnumer,tfdenom)))
    return tfprop
开发者ID:hbhat4000,项目名称:sdeinference,代码行数:9,代码来源:tfdtqem2.py

示例10: calculate_loss

  def calculate_loss(self, predictions, labels, **unused_params):
    with tf.name_scope("loss_xent"):
      epsilon = 10e-6
      alpha = FLAGS.alpha

      float_labels = tf.cast(labels, tf.float32)
      cross_entropy_loss = 2*(alpha*float_labels * tf.log(predictions + epsilon) + (1-alpha)*(
          1 - float_labels) * tf.log(1 - predictions + epsilon))
      cross_entropy_loss = tf.negative(cross_entropy_loss)
      return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
开发者ID:lvaleriu,项目名称:Youtube-8M-WILLOW,代码行数:10,代码来源:losses.py

示例11: find_top_nearest_neigbors

def find_top_nearest_neigbors(generated_list, nearneig, real_features_hdf5, gen_features_hdf5, maximum=False, save_path=None):
    real_img_hdf5 = real_features_hdf5.replace('_features_', '_images_')
    gen_img_hdf5 = gen_features_hdf5.replace('_features_', '_images_')

    real_features_file = h5py.File(real_features_hdf5, 'r')
    gen_features_file = h5py.File(gen_features_hdf5, 'r')
    real_img_file = h5py.File(real_img_hdf5, 'r')
    gen_img_file = h5py.File(gen_img_hdf5, 'r')

    real_features = real_features_file['features']
    gen_features = gen_features_file['features']
    real_img = real_img_file['images']
    gen_img = gen_img_file['images']

    with tf.Session() as sess:
        real_features = tf.constant(np.array(real_features), dtype=tf.float32)
        gen_features = tf.constant(np.array(gen_features), dtype=tf.float32)

        # Get Nearest Neighbors for all generated images.
        gen_real_distances = tf.sqrt(tf.abs(euclidean_distance(gen_features, real_features)))
        neg = tf.negative(gen_real_distances)
        neg_s_distances, s_indices = tf.math.top_k(input=neg, k=nearneig, sorted=True)
        s_distances = tf.negative(neg_s_distances)

        s_indices = s_indices.eval()
        s_distances = s_distances.eval()
        # For the images with top smallest distances, show nearest neighbors.
        height, width, channels = real_img.shape[1:]
        neighbors = dict()
        grid = np.zeros((len(generated_list)*height, (nearneig+1)*width, channels))
        for i, ind in enumerate(generated_list):
            total = gen_img[ind]
            neighbors[ind] = list() 
            for j in range(nearneig):
                neighbors[ind].append((s_indices[ind,j], s_distances[ind,j]))
                real = real_img[s_indices[ind,j]]/255.
                total = np.concatenate([total, real], axis=1)
            grid[i*height:(i+1)*height, :, :] = total
        plt.imshow(grid)
        if save_path is not None:
            plt.imsave(save_path, grid)
        return neighbors
开发者ID:AdalbertoCq,项目名称:Pathology-GAN,代码行数:42,代码来源:tools.py

示例12: create_network

    def create_network(self):
        networks = {}

        with tf.variable_scope('q_net'):

            # Input parameters
            x = networks['x'] = tf.placeholder(tf.float32, \
                            shape=[None, self.states], name='states')
            u = networks['u'] = tf.placeholder(tf.float32, \
                            shape=[None, self.actions], name='actions')

            # hidden layers
            init = 1./self.hidden_nodes/self.actions

            hid = tf.concat([x,  u], axis=1)
            hid = fully_connected(hid, self.hidden_nodes, \
                weights_initializer=tf.random_normal_initializer(init, init/5), \
                biases_initializer=tf.random_normal_initializer(init, init/5), \
                activation_fn=tf.tanh)

            for i in range(self.hidden_layers-1):
                hid = fully_connected(hid, self.hidden_nodes, \
                    weights_initializer=tf.random_normal_initializer(init, init/5), \
                    biases_initializer=tf.random_normal_initializer(init, init/5), \
                    activation_fn=tf.nn.relu)

            # Output parameters
            pos_layer = fully_connected(hid, 1, \
                weights_initializer=tf.random_normal_initializer(1./self.actions, 0.1), \
                biases_initializer=tf.random_normal_initializer(1./self.actions, 0.1))
            neg_layer = tf.negative(fully_connected(hid, 1, \
                weights_initializer=tf.random_normal_initializer(1./self.actions, 0.1), \
                biases_initializer=tf.random_normal_initializer(1./self.actions, 0.1)))

            Q = networks['Q'] = pos_layer + neg_layer

            # Describe loss functions.
            y_ = networks['y_'] = tf.placeholder(tf.float32, [None, 1], name='y_i')


            # Tensor outputs to calculate y_i values
            networks['reward'] = tf.placeholder(tf.float32, [None, 1], name='reward')
            networks['y_calc'] = tf.add(networks['reward'], tf.multiply(Q, self.gamma))

            networks['mse'] = tf.reduce_mean(tf.squared_difference(y_, \
                            Q), name='mse')
            networks['cross_entropy'] = -tf.reduce_sum(y_ * tf.log(Q), name='cross_entropy')
                            
            networks['optimize'] = tf.train.AdamOptimizer(\
                        learning_rate=self.alpha) \
                        .minimize(networks['mse'])
        
        self.tensors = networks
        return
开发者ID:dtimm,项目名称:mlnd-openai-gym,代码行数:54,代码来源:QLAgent.py

示例13: _GradientReversalGrad

def _GradientReversalGrad(_, grad):
  """The gradients for `gradient_reversal`.

  Args:
    _: The `gradient_reversal` `Operation` that we are differentiating,
      which we can use to find the inputs and outputs of the original op.
    grad: Gradient with respect to the output of the `gradient_reversal` op.

  Returns:
    Gradient with respect to the input of `gradient_reversal`, which is simply
    the negative of the input gradient.

  """
  return tf.negative(grad)
开发者ID:812864539,项目名称:models,代码行数:14,代码来源:grl_op_grads.py

示例14: k_nearest_neighbor_tf_part

def k_nearest_neighbor_tf_part(x, y, k):
    x_samples = tf.shape(x)[0]
    y_samples = tf.shape(y)[0]

    xx_d = euclidean_distance(x, x)
    yy_d = euclidean_distance(y, y)
    xy_d = euclidean_distance(x, y)

    labels = tf.concat([tf.ones((x_samples,1)), tf.zeros((y_samples,1))], axis=0)

    x_dist = tf.concat([xx_d, xy_d], axis=-1)
    y_dist = tf.concat([tf.transpose(xy_d), yy_d], axis=-1)
    total_dist = tf.concat([x_dist, y_dist], axis=0)
    '''
    x1x1   x1x2   ... x1x100   | x1y1   x1xy2   ... x1y200
    ...						   |   				  ...
    x100x1 x100x2 ... x100x100 | x100y1 x100xy2 ... x100y200
    ________________________________________________________
    y1x1   y1x2   ... y1x100   | y1y1   y1xy2   ... y1y200
    ...						   |  				  ...
    y100x1 y100x2 ... y100x100 | y100y1 y1xy2   ... y100y100
    ...						   |  				  ...
    y200x1 y200x2 ... y200x100 | y200y1 y200xy2 ... y200y200

    Diagonals of this tensor are the distance for the vector with itself.
    '''
    total_dist = tf.sqrt(tf.abs(total_dist))
    inf_eye = tf.eye(tf.shape(total_dist)[0])*1e+7

    #All element positive now, no smallest elements functions.
    all_dist = tf.math.add(inf_eye, total_dist)
    neg_all_dist = tf.negative(all_dist)
    values, indices = tf.math.top_k(input=neg_all_dist, k=k, sorted=True)
    values = tf.negative(values)

    return indices, labels
开发者ID:AdalbertoCq,项目名称:Pathology-GAN,代码行数:36,代码来源:k_nearest_neighbor.py

示例15: GMM_M_Step

def GMM_M_Step(X, Gama, ClusterNo, name='GMM_Statistics', **kwargs):

    D, h, s = tf.split(X, [1,1,1], axis=3)
    
    WXd = tf.multiply(Gama, tf.tile(D ,[1,1,1,ClusterNo]))
    WXa = tf.multiply(Gama, tf.tile(h ,[1,1,1,ClusterNo]))
    WXb = tf.multiply(Gama, tf.tile(s ,[1,1,1,ClusterNo]))
    
    S = tf.reduce_sum(tf.reduce_sum(Gama, axis=1), axis=1)
    S = tf.add(S, tf.contrib.keras.backend.epsilon())
    S = tf.reshape(S,[1, ClusterNo])
    
    M_d = tf.div(tf.reduce_sum(tf.reduce_sum(WXd, axis=1), axis=1) , S)
    M_a = tf.div(tf.reduce_sum(tf.reduce_sum(WXa, axis=1), axis=1) , S)
    M_b = tf.div(tf.reduce_sum(tf.reduce_sum(WXb, axis=1), axis=1) , S)
    
    Mu = tf.split(tf.concat([M_d, M_a, M_b],axis=0), ClusterNo, 1)  
    
    Norm_d = tf.squared_difference(D, tf.reshape(M_d,[1, ClusterNo]))
    Norm_h = tf.squared_difference(h, tf.reshape(M_a,[1, ClusterNo]))
    Norm_s = tf.squared_difference(s, tf.reshape(M_b,[1, ClusterNo]))
    
    WSd = tf.multiply(Gama, Norm_d)
    WSh = tf.multiply(Gama, Norm_h)
    WSs = tf.multiply(Gama, Norm_s)
    
    S_d = tf.sqrt(tf.div(tf.reduce_sum(tf.reduce_sum(WSd, axis=1), axis=1) , S))
    S_h = tf.sqrt(tf.div(tf.reduce_sum(tf.reduce_sum(WSh, axis=1), axis=1) , S))
    S_s = tf.sqrt(tf.div(tf.reduce_sum(tf.reduce_sum(WSs, axis=1), axis=1) , S))
    
    Std = tf.split(tf.concat([S_d, S_h, S_s],axis=0), ClusterNo, 1)  
    
    dist = list()
    for k in range(0, ClusterNo):
        dist.append(tf.contrib.distributions.MultivariateNormalDiag(tf.reshape(Mu[k],[1,3]), tf.reshape(Std[k],[1,3])))
    
    PI = tf.split(Gama, ClusterNo, axis=3) 
    Prob0 = list()
    for k in range(0, ClusterNo):
        Prob0.append(tf.multiply(tf.squeeze(dist[k].prob(X)), tf.squeeze(PI[k])))
        
    Prob = tf.convert_to_tensor(Prob0, dtype=tf.float32)    
    Prob = tf.minimum(tf.add(tf.reduce_sum(Prob, axis=0), tf.contrib.keras.backend.epsilon()), tf.constant(1.0, tf.float32))
    Log_Prob = tf.negative(tf.log(Prob))
    Log_Likelihood = tf.reduce_mean(Log_Prob)
    
    return Log_Likelihood, Mu, Std
        
开发者ID:FarhadZanjani,项目名称:Histopathology-Stain-Color-Normalization,代码行数:47,代码来源:GMM_M_Step.py


注:本文中的tensorflow.negative函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。