当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.maximum函数代码示例

本文整理汇总了Python中tensorflow.maximum函数的典型用法代码示例。如果您正苦于以下问题:Python maximum函数的具体用法?Python maximum怎么用?Python maximum使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了maximum函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: adv_net_loss

def adv_net_loss(input, model, labels, target, adv_output_layer, confidence, c):
    # calculate l2 distance between ori_input and adversarial examples
    adv_output = model.get_layer(input, adv_output_layer)
    dif = tf.subtract(adv_output, input)
    # reshape_dif = tf.reshape(dif, shape=(dif.get_shape()[0],-1))
    # l2_dis_loss = tf.norm(reshape_dif, axis=1)
    l2_dis_loss = tf.square(dif)
    l2_dis_loss = tf.reduce_mean(l2_dis_loss, name='l2_dis_loss')

    tf.add_to_collection('losses', l2_dis_loss)

    # attack target loss
    logits = model(input)
    one_hot_labels = tf.one_hot(labels,10)
    real = tf.reduce_sum(one_hot_labels*logits, 1)
    other_max = tf.reduce_max((1-one_hot_labels)*logits-one_hot_labels*10000, 1)
    if target:
        attack_loss = tf.maximum(0.0, other_max - real + confidence)
    else:
        attack_loss = tf.maximum(0.0, real - other_max + confidence)
    attack_loss = tf.reduce_mean(attack_loss, name='attack_loss')

    tf.add_to_collection('losses', attack_loss)

    # total loss
    total_loss = l2_dis_loss*c + attack_loss*0

    return total_loss
开发者ID:Jack-lx-jiang,项目名称:Adversarial-Example-Generative-Net,代码行数:28,代码来源:mdt_cifar10_train.py

示例2: bboxes_intersection

def bboxes_intersection(bbox_ref, bboxes, name=None):
    """Compute relative intersection between a reference box and a
    collection of bounding boxes. Namely, compute the quotient between
    intersection area and box area.

    Args:
      bbox_ref: (N, 4) or (4,) Tensor with reference bounding box(es).
      bboxes: (N, 4) Tensor, collection of bounding boxes.
    Return:
      (N,) Tensor with relative intersection.
    """
    with tf.name_scope(name, 'bboxes_intersection'):
        # Should be more efficient to first transpose.
        bboxes = tf.transpose(bboxes)
        bbox_ref = tf.transpose(bbox_ref)
        # Intersection bbox and volume.
        int_ymin = tf.maximum(bboxes[0], bbox_ref[0])
        int_xmin = tf.maximum(bboxes[1], bbox_ref[1])
        int_ymax = tf.minimum(bboxes[2], bbox_ref[2])
        int_xmax = tf.minimum(bboxes[3], bbox_ref[3])
        h = tf.maximum(int_ymax - int_ymin, 0.)
        w = tf.maximum(int_xmax - int_xmin, 0.)
        # Volumes.
        inter_vol = h * w
        bboxes_vol = (bboxes[2] - bboxes[0]) * (bboxes[3] - bboxes[1])
        scores = tfe_math.safe_divide(inter_vol, bboxes_vol, 'intersection')
        return scores
开发者ID:bowrian,项目名称:SSD-Tensorflow,代码行数:27,代码来源:bboxes.py

示例3: output_dropout_no_bias

    def output_dropout_no_bias(self,x,keep_prob=0.5):
       
        if(self.activation == 'sigmoid'):
            return tf.nn.dropout(tf.nn.sigmoid(tf.matmul(x,self.W)), keep_prob)
            
        elif(self.activation == 'relu'):
            return tf.nn.dropout(tf.nn.relu(tf.matmul(x,self.W)), keep_prob)
           
        elif(self.activation == 'relu6'):
        
            return tf.nn.dropout(tf.nn.relu6(tf.matmul(x,self.W)), keep_prob)
            
        elif(self.activation == 'leaky_relu'):

    	    return tf.nn.dropout(tf.maximum(0.1*tf.matmul(x,self.W),tf.matmul(x,self.W)),keep_prob)
   
        elif(self.activation == 'leaky_relu6'):

    	    return tf.nn.dropout(tf.maximum(0.1*tf.matmul(x,self.W),6),keep_prob)

    	elif(self.activation == 'linear'):
    
            return tf.nn.dropout(tf.matmul(x,self.W),keep_prob)
           
        elif(self.activation == 'softplus'):
           
            return tf.nn.dropout(tf.nn.softplus(tf.matmul(x,self.W)),keep_prob)
      
        elif(self.activation == 'tanh'):
         
            return tf.nn.dropout(tf.tanh(tf.matmul(x,self.W)),keep_prob)
         
        else:
            print "No known activation function selected, using linear"
        return tf.matmul(x,self.W)
开发者ID:ceru23,项目名称:autoencoder_tf,代码行数:35,代码来源:layer.py

示例4: _conv

    def _conv(self, input, shape, strides, name, alpha=0.1):
        """
        args:
            shape : [3, 3, in, out]
        """
    
        if self.bn_mode:
            with tf.variable_scope(name) as scope:
                kernel = self._variable_trunc_normal('weights', shape)
                conv = tf.nn.conv2d(input, kernel, strides, padding='SAME')
                bn_conv = self._batch_normalization(conv, shape[-1], [0, 1, 2])
                conv_ = tf.maximum(bn_conv, alpha*bn_conv, name=scope.name)
                if tf.get_variable_scope().reuse is False:
                    self._add_weight_decay(kernel)
                    self._activation_summary(conv_)
        else:
            with tf.variable_scope(name) as scope:
                kernel = self._variable_trunc_normal('weights', shape)
                conv = tf.nn.conv2d(input,kernel,strides, padding='SAME')
                biases = self._variable_constant('biases', shape[-1], value=0.01)
                bias = tf.nn.bias_add(conv, biases)
                conv_ = tf.maximum(bias, alpha*bias, name=scope.name)
                if tf.get_variable_scope().reuse is False:
                    self._add_weight_decay(kernel)
                    self._activation_summary(conv_)

        return conv_
开发者ID:shmsw25,项目名称:cifar10-classification,代码行数:27,代码来源:ConvNet.py

示例5: bboxes_clip

def bboxes_clip(bbox_ref, bboxes, scope=None):
    """Clip bounding boxes to a reference box.
    Batch-compatible if the first dimension of `bbox_ref` and `bboxes`
    can be broadcasted.

    Args:
      bbox_ref: Reference bounding box. Nx4 or 4 shaped-Tensor;
      bboxes: Bounding boxes to clip. Nx4 or 4 shaped-Tensor or dictionary.
    Return:
      Clipped bboxes.
    """
    # Bboxes is dictionary.
    if isinstance(bboxes, dict):
        with tf.name_scope(scope, 'bboxes_clip_dict'):
            d_bboxes = {}
            for c in bboxes.keys():
                d_bboxes[c] = bboxes_clip(bbox_ref, bboxes[c])
            return d_bboxes

    # Tensors inputs.
    with tf.name_scope(scope, 'bboxes_clip'):
        # Easier with transposed bboxes. Especially for broadcasting.
        bbox_ref = tf.transpose(bbox_ref)
        bboxes = tf.transpose(bboxes)
        # Intersection bboxes and reference bbox.
        ymin = tf.maximum(bboxes[0], bbox_ref[0])
        xmin = tf.maximum(bboxes[1], bbox_ref[1])
        ymax = tf.minimum(bboxes[2], bbox_ref[2])
        xmax = tf.minimum(bboxes[3], bbox_ref[3])
        # Double check! Empty boxes when no-intersection.
        ymin = tf.minimum(ymin, ymax)
        xmin = tf.minimum(xmin, xmax)
        bboxes = tf.transpose(tf.stack([ymin, xmin, ymax, xmax], axis=0))
        return bboxes
开发者ID:bowrian,项目名称:SSD-Tensorflow,代码行数:34,代码来源:bboxes.py

示例6: f_iou_box

def f_iou_box(top_left_a, bot_right_a, top_left_b, bot_right_b):
    """Computes IoU of boxes.

    Args:
        top_left_a: [B, T, 2] or [B, 2]
        bot_right_a: [B, T, 2] or [B, 2]
        top_left_b: [B, T, 2] or [B, 2]
        bot_right_b: [B, T, 2] or [B, 2]

    Returns:
        iou: [B, T]
    """
    inter_area = f_inter_box(top_left_a, bot_right_a, top_left_b, bot_right_b)
    inter_area = tf.maximum(inter_area, 1e-6)
    ndims = tf.shape(tf.shape(top_left_a))
    # area_a = tf.reduce_prod(bot_right_a - top_left_a, ndims - 1)
    # area_b = tf.reduce_prod(bot_right_b - top_left_b, ndims - 1)
    check_a = tf.reduce_prod(tf.to_float(top_left_a < bot_right_a), ndims - 1)
    area_a = check_a * tf.reduce_prod(bot_right_a - top_left_a, ndims - 1)
    check_b = tf.reduce_prod(tf.to_float(top_left_b < bot_right_b), ndims - 1)
    area_b = check_b * tf.reduce_prod(bot_right_b - top_left_b, ndims - 1)
    union_area = (area_a + area_b - inter_area + 1e-5)
    union_area = tf.maximum(union_area, 1e-5)
    iou = inter_area / union_area
    iou = tf.maximum(iou, 1e-5)
    iou = tf.minimum(iou, 1.0)

    return iou
开发者ID:lrjconan,项目名称:img-count,代码行数:28,代码来源:ris_model_base.py

示例7: loss

    def loss(self):
        # 1. The margin loss

        # [batch_size, 10, 1, 1]
        # max_l = max(0, m_plus-||v_c||)^2
        max_l = tf.square(tf.maximum(0., cfg.m_plus - self.v_length))
        # max_r = max(0, ||v_c||-m_minus)^2
        max_r = tf.square(tf.maximum(0., self.v_length - cfg.m_minus))
        assert max_l.get_shape() == [cfg.batch_size, 10, 1, 1]

        # reshape: [batch_size, 10, 1, 1] => [batch_size, 10]
        max_l = tf.reshape(max_l, shape=(cfg.batch_size, -1))
        max_r = tf.reshape(max_r, shape=(cfg.batch_size, -1))

        # calc T_c: [batch_size, 10]
        # T_c = Y, is my understanding correct? Try it.
        T_c = self.Y
        # [batch_size, 10], element-wise multiply
        L_c = T_c * max_l + cfg.lambda_val * (1 - T_c) * max_r

        self.margin_loss = tf.reduce_mean(tf.reduce_sum(L_c, axis=1))

        # 2. The reconstruction loss
        orgin = tf.reshape(self.X, shape=(cfg.batch_size, -1))
        squared = tf.square(self.decoded - orgin)
        self.reconstruction_err = tf.reduce_mean(squared)

        # 3. Total loss
        # The paper uses sum of squared error as reconstruction error, but we
        # have used reduce_mean in `# 2 The reconstruction loss` to calculate
        # mean squared error. In order to keep in line with the paper,the
        # regularization scale should be 0.0005*784=0.392
        self.total_loss = self.margin_loss + cfg.regularization_scale * self.reconstruction_err
开发者ID:wangjianyuweg,项目名称:CapsNet-Tensorflow,代码行数:33,代码来源:capsNet.py

示例8: get_next_input

def get_next_input(output):
    # the next location is computed by the location network
    baseline = tf.sigmoid(tf.matmul(output,Wb_h_b) + Bb_h_b)
    baselines.append(baseline)
    # compute the next location, then impose noise
    if eyeCentered:
        # add the last sampled glimpse location
        # TODO max(-1, min(1, u + N(output, sigma) + prevLoc))
        mean_loc = tf.maximum(-1.0, tf.minimum(1.0, tf.matmul(output, Wl_h_l) + sampled_locs[-1] ))
    else:
        mean_loc = tf.matmul(output, Wl_h_l)

    # mean_loc = tf.stop_gradient(mean_loc)
    mean_locs.append(mean_loc)
    mean_locs_stopGrad.append(tf.stop_gradient(mean_loc))

    # add noise
    # sample_loc = tf.tanh(mean_loc + tf.random_normal(mean_loc.get_shape(), 0, loc_sd))
    sample_loc = tf.maximum(-1.0, tf.minimum(1.0, mean_loc + tf.random_normal(mean_loc.get_shape(), 0, loc_sd)))

    # don't propagate throught the locations
    # sample_loc = tf.stop_gradient(sample_loc)
    sampled_locs.append(sample_loc)
    sampled_locs_stopGrad.append(tf.stop_gradient(sample_loc))

    return get_glimpse(sample_loc)
开发者ID:QihongL,项目名称:RAM,代码行数:26,代码来源:ram.py

示例9: _update_lipschitz

  def _update_lipschitz(self,v,i):
    config = self.config
    if len(v.shape) > 1:
      k = self.config.weight_constraint_k or 100.0000
      wi_hat = v
      if len(v.shape) == 4:
        #fij = tf.reduce_sum(tf.abs(wi_hat),  axis=[0,1])
        fij = wi_hat
        fij = tf.reduce_sum(tf.abs(fij),  axis=[1])
        fij = tf.reduce_max(fij,  axis=[0])
      else:
        fij = wi_hat

      if self.config.ortho_pnorm == "inf":
        wp = tf.reduce_max(tf.reduce_sum(tf.abs(fij), axis=0), axis=0)
      else:
        # conv
        wp = tf.reduce_max(tf.reduce_sum(tf.abs(fij), axis=1), axis=0)
      ratio = (1.0/tf.maximum(1.0, wp/k))
      
      if self.config.weight_bounce:
        bounce = tf.minimum(1.0, tf.ceil(wp/k-0.999))
        ratio -= tf.maximum(0.0, bounce) * 0.2

      if self.config.weight_scaleup:
        up = tf.minimum(1.0, tf.ceil(0.02-wp/k))
        ratio += tf.maximum(0.0, up) * k/wp * 0.2

      wi = ratio*(wi_hat)
      #self.gan.metrics['wi'+str(i)]=wp
      #self.gan.metrics['wk'+str(i)]=ratio
      #self.gan.metrics['bouce'+str(i)]=bounce
      return tf.assign(v, wi)
    return None
开发者ID:255BITS,项目名称:hyperchamber-gan,代码行数:34,代码来源:weight_constraint_train_hook.py

示例10: prune_conv_w

 def prune_conv_w(self, w, w_abs_mean):
     with tf.name_scope("Prune_conv"):
         conv_gamma = 0.25 * self.gamma
         log_w = tf.log(tf.maximum(self.eps, tf.abs(w) / (w_abs_mean * conv_gamma)))
         if self.max_ratio > 0:
             log_w = tf.minimum(self.max_ratio, self.beta * log_w)
         return w * tf.maximum(self.alpha / self.beta * log_w, log_w)
开发者ID:bitores,项目名称:MachineLearning,代码行数:7,代码来源:NNUtil.py

示例11: preprocess

def preprocess(img, input_size, model):
    # Convert RGB to BGR
    img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img)
    img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32)
        
    # Extract mean.
    img -= IMG_MEAN

    if model == 'fcn-8s':
        shape = tf.shape(img)
        img = tf.expand_dims(img, dim=0)
        output = tf.image.resize_bilinear(img, input_size)

        return output, shape
    elif model == 'pspnet50':
        shape = tf.shape(img)
        h, w = (tf.maximum(input_size[0], shape[0]), tf.maximum(input_size[1], shape[1]))
        pad_img = tf.image.pad_to_bounding_box(img, 0, 0, h, w)
        output = tf.expand_dims(pad_img, dim=0)
       
        return output, h, w, shape

    elif model == 'icnet':
        img = tf.expand_dims(img, dim=0)
        output = tf.image.resize_bilinear(img, input_size)

        return output, input_size
开发者ID:ascenoputing,项目名称:SemanticSegmentation_DL,代码行数:27,代码来源:tools.py

示例12: prune_w

    def prune_w(self, w, w_abs, w_abs_mean, w_abs_std):
        self.cursor += 1
        with tf.name_scope("Prune"):
            if self.cond_placeholder is None:
                log_w = tf.log(tf.maximum(self.eps, w_abs / (w_abs_mean * self.gamma)))
                if self.max_ratio > 0:
                    log_w = tf.minimum(self.max_ratio, self.beta * log_w)
                self.masks.append(tf.maximum(self.alpha / self.beta * log_w, log_w))
                return w * self.masks[self.cursor]

            self.masks.append(tf.Variable(np.ones(w.get_shape(), np.float32), trainable=False))

            def prune(i, do_prune):
                def sub():
                    if not do_prune:
                        mask = self.masks[i]
                        self.masks[i] = tf.assign(mask, tf.where(
                            tf.logical_and(
                                tf.equal(mask, 1),
                                tf.less_equal(w_abs, 0.9 * tf.maximum(w_abs_mean + self.beta * w_abs_std, self.eps))
                            ),
                            tf.zeros_like(mask), mask
                        ))
                        mask = self.masks[i]
                        self.masks[i] = tf.assign(mask, tf.where(
                            tf.logical_and(
                                tf.equal(mask, 0),
                                tf.greater(w_abs, 1.1 * tf.maximum(w_abs_mean + self.beta * w_abs_std, self.eps))
                            ),
                            tf.ones_like(mask), mask
                        ))
                    return w * self.masks[i]
                return sub

            return tf.cond(self.cond_placeholder, prune(self.cursor, True), prune(self.cursor, False))
开发者ID:bitores,项目名称:MachineLearning,代码行数:35,代码来源:NNUtil.py

示例13: clip_eta

def clip_eta(eta, ord, eps):
    """
    Helper function to clip the perturbation to epsilon norm ball.
    :param eta: A tensor with the current perturbation.
    :param ord: Order of the norm (mimics Numpy).
                Possible values: np.inf, 1 or 2.
    :param eps: Epilson, bound of the perturbation.
    """

    # Clipping perturbation eta to self.ord norm ball
    if ord not in [np.inf, 1, 2]:
        raise ValueError('ord must be np.inf, 1, or 2.')
    reduc_ind = list(xrange(1, len(eta.get_shape())))
    avoid_zero_div = 1e-12
    if ord == np.inf:
        eta = tf.clip_by_value(eta, -eps, eps)
    else:
        if ord == 1:
            norm = tf.maximum(avoid_zero_div,
                              reduce_sum(tf.abs(eta),
                                         reduc_ind, keepdims=True))
        elif ord == 2:
            # avoid_zero_div must go inside sqrt to avoid a divide by zero
            # in the gradient through this operation
            norm = tf.sqrt(tf.maximum(avoid_zero_div,
                                      reduce_sum(tf.square(eta),
                                                 reduc_ind,
                                                 keepdims=True)))
        # We must *clip* to within the norm ball, not *normalize* onto the
        # surface of the ball
        factor = tf.minimum(1., eps / norm)
        eta = eta * factor
    return eta
开发者ID:limin24kobe,项目名称:cleverhans,代码行数:33,代码来源:utils_tf.py

示例14: run_tf_simulation

    def run_tf_simulation(self, c_in, h_in, timesteps=100, dt=0.005):
        r_e = tf.Variable( tf.zeros([self.N_pairs, self.N_pairs]) )
        r_i = tf.Variable( tf.zeros([self.N_pairs, self.N_pairs]) )
        
        W_EE = tf.placeholder(tf.float32)
        W_EI = tf.placeholder(tf.float32)
        W_IE = tf.placeholder(tf.float32)
        W_II = tf.placeholder(tf.float32)
        k = tf.placeholder(tf.float32)
        n_E = tf.placeholder(tf.float32)
        n_I = tf.placeholder(tf.float32) 
        tau_E = tf.placeholder(tf.float32)
        tau_I = tf.placeholder(tf.float32)
        
        c0 = tf.constant(c_in)
        h0 = tf.constant(h_in)
                
        # Compile functions:
        I_E = c0*h0 + tf.transpose(tf.reshape(tf.reduce_sum(W_EE * r_e, [1,2]), [75,75])) \
            - tf.transpose(tf.reshape(tf.reduce_sum(W_EI * r_i, [1,2]), [75,75]))
        I_I = c0*h0 + tf.transpose(tf.reshape(tf.reduce_sum(W_IE * r_e, [1,2]), [75,75])) \
            - tf.transpose(tf.reshape(tf.reduce_sum(W_II * r_i, [1,2]), [75,75]))

        I_thresh_E = tf.maximum(0., I_E)
        I_thresh_I = tf.maximum(0., I_I)

        r_SS_E = k * tf.pow(I_thresh_E, n_E)
        r_SS_I = k * tf.pow(I_thresh_I, n_I)

        rE_out = r_e + dt*(-r_e+r_SS_E)/tau_E
        rI_out = r_i + dt*(-r_i+r_SS_I)/tau_I
        
        update_rE = tf.assign(r_e, rE_out)
        update_rI = tf.assign(r_i, rI_out)
        
        init = tf.initialize_all_variables()
        
        rE = 0
        rI = 0
        
        fd = {W_EE:self.W_EE.astype(np.float32), 
                  W_EI:self.W_EI.astype(np.float32), 
                  W_IE:self.W_IE.astype(np.float32), 
                  W_II:self.W_II.astype(np.float32),
                  k:self.k.astype(np.float32),
                  n_E:self.n_E.astype(np.float32),
                  n_I:self.n_I.astype(np.float32),
                  tau_E:self.tau_E.astype(np.float32),
                  tau_I:self.tau_I.astype(np.float32)}
        
        with tf.Session() as sess:
            sess.run(init, feed_dict=fd)
            for t in range(timesteps):
                # run the simulation
                sess.run([update_rE, update_rI], feed_dict=fd)
            # fetch the rates
            rE = sess.run([r_e], feed_dict=fd)
            rI = sess.run([r_i], feed_dict=fd)
            
        return rE, rI
开发者ID:benselby,项目名称:v1_modelling,代码行数:60,代码来源:ssn_subpop_tf.py

示例15: IoU

def IoU(bbox, gt):

    # bbox = [ x , y , w , h ] ( x , y  left up)

    shape = [-1, 1]

    x1 = tf.maximum(tf.cast(bbox[0], tf.float32), tf.reshape(tf.cast(gt[:,0], tf.float32), shape))
    y1 = tf.maximum(tf.cast(bbox[1], tf.float32), tf.reshape(tf.cast(gt[:,1], tf.float32), shape))
    x2 = tf.minimum(tf.cast(bbox[2] + bbox[0], tf.float32), tf.reshape(tf.cast(gt[:,2] + gt[:,0], tf.float32), shape))
    y2 = tf.minimum(tf.cast(bbox[3] + bbox[1], tf.float32), tf.reshape(tf.cast(gt[:,3] + gt[:,1], tf.float32), shape))


    inter_w = tf.sub(x2,x1)

    inter_h = tf.sub(y2,y1)

    inter = tf.cast(inter_w * inter_h, tf.float32)

    bounding_box = tf.cast(tf.mul(bbox[2],bbox[3]), tf.float32)

    ground_truth = tf.reshape(tf.cast(tf.mul(gt[:,2],gt[:,3]), tf.float32), shape)

    #iou = tf.div(inter,tf.sub(tf.add(bounding_box,tf.reshape(ground_truth,shape)),inter))

    iou = inter / (bounding_box + ground_truth - inter)

    # limit the iou range between 0 and 1
    
    mask_less = tf.cast(tf.logical_not(tf.less(iou, tf.zeros_like(iou))), tf.float32)
    #mask_great = tf.cast(tf.logical_not(tf.greater(iou, tf.ones_like(iou))), tf.float32)
    
    iou = tf.mul(iou, mask_less)
    #iou = tf.mul(iou, positive_mask)
    
    return iou
开发者ID:Johannes-brahms,项目名称:Yolo,代码行数:35,代码来源:utils.py


注:本文中的tensorflow.maximum函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。