本文整理汇总了Python中tensorflow.is_variable_initialized函数的典型用法代码示例。如果您正苦于以下问题:Python is_variable_initialized函数的具体用法?Python is_variable_initialized怎么用?Python is_variable_initialized使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了is_variable_initialized函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testRecoverSession
def testRecoverSession(self):
# Create a checkpoint.
checkpoint_dir = os.path.join(self.get_temp_dir(), "recover_session")
try:
gfile.DeleteRecursively(checkpoint_dir)
except OSError:
pass # Ignore
gfile.MakeDirs(checkpoint_dir)
with tf.Graph().as_default():
v = tf.Variable(1, name="v")
sm = tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
saver = tf.train.Saver({"v": v})
sess, initialized = sm.recover_session("", saver=saver, checkpoint_dir=checkpoint_dir)
self.assertFalse(initialized)
sess.run(v.initializer)
self.assertEquals(1, sess.run(v))
saver.save(sess, os.path.join(checkpoint_dir, "recover_session_checkpoint"))
# Create a new Graph and SessionManager and recover.
with tf.Graph().as_default():
v = tf.Variable(2, name="v")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
sm2 = tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
saver = tf.train.Saver({"v": v})
sess, initialized = sm2.recover_session("", saver=saver, checkpoint_dir=checkpoint_dir)
self.assertTrue(initialized)
self.assertEqual(True, tf.is_variable_initialized(sess.graph.get_tensor_by_name("v:0")).eval(session=sess))
self.assertEquals(1, sess.run(v))
示例2: testWaitForSessionLocalInit
def testWaitForSessionLocalInit(self):
server = tf.train.Server.create_local_server()
with tf.Graph().as_default() as graph:
v = tf.Variable(1, name="v")
w = tf.Variable(
v,
trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name="w")
sm = tf.train.SessionManager(
graph=graph,
ready_op=tf.report_uninitialized_variables(),
ready_for_local_init_op=tf.report_uninitialized_variables(
tf.all_variables()),
local_init_op=w.initializer)
# Initialize v but not w
s = tf.Session(server.target, graph=graph)
s.run(v.initializer)
sess = sm.wait_for_session(server.target, max_wait_secs=3)
self.assertEqual(
True,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("v:0")).eval(
session=sess))
self.assertEqual(
True,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("w:0")).eval(
session=sess))
self.assertEquals(1, sess.run(v))
self.assertEquals(1, sess.run(w))
示例3: testPrepareSessionWithReadyForLocalInitOp
def testPrepareSessionWithReadyForLocalInitOp(self):
with tf.Graph().as_default():
v = tf.Variable(1, name="v")
w = tf.Variable(
v,
trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name="w")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
self.assertEqual(False, tf.is_variable_initialized(w).eval())
sm2 = tf.train.SessionManager(
ready_op=tf.report_uninitialized_variables(),
ready_for_local_init_op=tf.report_uninitialized_variables(
tf.all_variables()),
local_init_op=w.initializer)
sess = sm2.prepare_session("", init_op=v.initializer)
self.assertEqual(
True,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("v:0")).eval(
session=sess))
self.assertEqual(
True,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("w:0")).eval(
session=sess))
self.assertEquals(1, sess.run(v))
self.assertEquals(1, sess.run(w))
示例4: testRecoverSessionNoChkptStillRunsLocalInitOp
def testRecoverSessionNoChkptStillRunsLocalInitOp(self):
# This test checks for backwards compatibility.
# In particular, we continue to ensure that recover_session will execute
# local_init_op exactly once, regardless of whether the session was
# successfully recovered.
with tf.Graph().as_default():
w = tf.Variable(
1,
trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name="w")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(w).eval())
sm2 = tf.train.SessionManager(
ready_op=tf.report_uninitialized_variables(),
ready_for_local_init_op=None,
local_init_op=w.initializer)
# Try to recover session from None
sess, initialized = sm2.recover_session(
"", saver=None, checkpoint_dir=None)
# Succeeds because recover_session still run local_init_op
self.assertFalse(initialized)
self.assertEqual(
True,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("w:0")).eval(
session=sess))
self.assertEquals(1, sess.run(w))
示例5: testIsVariableInitialized
def testIsVariableInitialized(self):
for use_gpu in [True, False]:
with self.test_session(use_gpu=use_gpu):
v0 = state_ops.variable_op([1, 2], tf.float32)
self.assertEqual(False, tf.is_variable_initialized(v0).eval())
tf.assign(v0, [[2.0, 3.0]]).eval()
self.assertEqual(True, tf.is_variable_initialized(v0).eval())
示例6: testRecoverSessionWithReadyForLocalInitOpFailsToReadyLocal
def testRecoverSessionWithReadyForLocalInitOpFailsToReadyLocal(self):
# We use ready_for_local_init_op=tf.report_uninitialized_variables(),
# which causes recover_session to not run local_init_op, and to return
# initialized=False
# Create a checkpoint.
checkpoint_dir = os.path.join(
self.get_temp_dir(),
"recover_session_ready_for_local_init_fails_to_ready_local")
try:
gfile.DeleteRecursively(checkpoint_dir)
except errors.OpError:
pass # Ignore
gfile.MakeDirs(checkpoint_dir)
with tf.Graph().as_default():
v = tf.Variable(1, name="v")
sm = tf.train.SessionManager(ready_op=tf.report_uninitialized_variables())
saver = tf.train.Saver({"v": v})
sess, initialized = sm.recover_session(
"", saver=saver, checkpoint_dir=checkpoint_dir)
self.assertFalse(initialized)
sess.run(v.initializer)
self.assertEquals(1, sess.run(v))
saver.save(sess, os.path.join(checkpoint_dir,
"recover_session_checkpoint"))
# Create a new Graph and SessionManager and recover.
with tf.Graph().as_default():
v = tf.Variable(2, name="v")
w = tf.Variable(
v,
trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name="w")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
self.assertEqual(False, tf.is_variable_initialized(w).eval())
sm2 = tf.train.SessionManager(
ready_op=tf.report_uninitialized_variables(),
ready_for_local_init_op=tf.report_uninitialized_variables(),
local_init_op=w.initializer)
saver = tf.train.Saver({"v": v})
sess, initialized = sm2.recover_session(
"", saver=saver, checkpoint_dir=checkpoint_dir)
self.assertFalse(initialized)
self.assertEqual(
True,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("v:0")).eval(
session=sess))
self.assertEqual(
False,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("w:0")).eval(
session=sess))
self.assertEquals(1, sess.run(v))
示例7: testPrepareSessionFails
def testPrepareSessionFails(self):
checkpoint_dir = os.path.join(self.get_temp_dir(), "prepare_session")
checkpoint_dir2 = os.path.join(self.get_temp_dir(), "prepare_session2")
try:
gfile.DeleteRecursively(checkpoint_dir)
gfile.DeleteRecursively(checkpoint_dir2)
except OSError:
pass # Ignore
gfile.MakeDirs(checkpoint_dir)
with tf.Graph().as_default():
v = tf.Variable([1.0, 2.0, 3.0], name="v")
sm = tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
saver = tf.train.Saver({"v": v})
sess = sm.prepare_session(
"", init_op=tf.initialize_all_variables(), saver=saver, checkpoint_dir=checkpoint_dir
)
self.assertAllClose([1.0, 2.0, 3.0], sess.run(v))
checkpoint_filename = os.path.join(checkpoint_dir, "prepare_session_checkpoint")
saver.save(sess, checkpoint_filename)
# Create a new Graph and SessionManager and recover.
with tf.Graph().as_default():
# Renames the checkpoint directory.
os.rename(checkpoint_dir, checkpoint_dir2)
gfile.MakeDirs(checkpoint_dir)
v = tf.Variable([6.0, 7.0, 8.0], name="v")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
tf.train.SessionManager(ready_op=tf.assert_variables_initialized())
saver = tf.train.Saver({"v": v})
# This should fail as there's no checkpoint within 2 seconds.
with self.assertRaisesRegexp(RuntimeError, "no init_op or init_fn was given"):
sess = sm.prepare_session(
"",
init_op=None,
saver=saver,
checkpoint_dir=checkpoint_dir,
wait_for_checkpoint=True,
max_wait_secs=2,
)
# Rename the checkpoint directory back.
gfile.DeleteRecursively(checkpoint_dir)
os.rename(checkpoint_dir2, checkpoint_dir)
# This should succeed as there's checkpoint.
sess = sm.prepare_session(
"", init_op=None, saver=saver, checkpoint_dir=checkpoint_dir, wait_for_checkpoint=True, max_wait_secs=2
)
self.assertEqual(True, tf.is_variable_initialized(sess.graph.get_tensor_by_name("v:0")).eval(session=sess))
示例8: testPrepareSessionDidNotInitLocalVariable
def testPrepareSessionDidNotInitLocalVariable(self):
with tf.Graph().as_default():
v = tf.Variable(1, name="v")
w = tf.Variable(
v,
trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name="w")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
self.assertEqual(False, tf.is_variable_initialized(w).eval())
sm2 = tf.train.SessionManager(
ready_op=tf.report_uninitialized_variables())
with self.assertRaisesRegexp(RuntimeError,
"Init operations did not make model ready"):
sm2.prepare_session("", init_op=v.initializer)
示例9: initialize_uninitialized
def initialize_uninitialized(self, sess):
global_vars = tf.global_variables()
is_not_initialized = sess.run([tf.is_variable_initialized(var) for var in global_vars])
not_initialized_vars = [v for (v, f) in zip(global_vars, is_not_initialized) if not f]
if len(not_initialized_vars):
sess.run(tf.variables_initializer(not_initialized_vars))
示例10: initialize_uninitialized
def initialize_uninitialized(sess):
global_vars = tf.global_variables()
is_not_initialized = sess.run([tf.is_variable_initialized(var) for var in global_vars])
not_initialized_vars = [v for (v, f) in zip(global_vars, is_not_initialized) if not f]
print([str(i.name) for i in not_initialized_vars]) # only for testing
if len(not_initialized_vars):
sess.run(tf.variables_initializer(not_initialized_vars))
示例11: _build
def _build(self):
unconstrained = self._build_parameter()
constrained = self._build_constrained(unconstrained)
prior = self._build_prior(unconstrained, constrained)
self._is_initialized_tensor = tf.is_variable_initialized(unconstrained)
self._unconstrained_tensor = unconstrained
self._constrained_tensor = constrained
self._prior_tensor = prior
示例12: testPrepareSessionWithInsufficientReadyForLocalInitCheck
def testPrepareSessionWithInsufficientReadyForLocalInitCheck(self):
with tf.Graph().as_default():
v = tf.Variable(1, name="v")
w = tf.Variable(
v,
trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name="w")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
self.assertEqual(False, tf.is_variable_initialized(w).eval())
sm2 = tf.train.SessionManager(
ready_op=tf.report_uninitialized_variables(),
ready_for_local_init_op=None,
local_init_op=w.initializer)
with self.assertRaisesRegexp(tf.errors.FailedPreconditionError,
"Attempting to use uninitialized value v"):
sm2.prepare_session("", init_op=None)
示例13: testRecoverSessionFailsStillRunsLocalInitOp
def testRecoverSessionFailsStillRunsLocalInitOp(self):
# Create a checkpoint.
checkpoint_dir = os.path.join(
self.get_temp_dir(),
"recover_session_ready_for_local_init_fails_stil_run")
try:
gfile.DeleteRecursively(checkpoint_dir)
except errors.OpError:
pass # Ignore
gfile.MakeDirs(checkpoint_dir)
# Create a new Graph and SessionManager and recover.
with tf.Graph().as_default():
v = tf.Variable(2, name="v")
w = tf.Variable(
1,
trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES],
name="w")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
self.assertEqual(False, tf.is_variable_initialized(w).eval())
sm2 = tf.train.SessionManager(
ready_op=tf.report_uninitialized_variables(),
ready_for_local_init_op=None,
local_init_op=w.initializer)
saver = tf.train.Saver({"v": v})
sess, initialized = sm2.recover_session(
"",
saver=saver,
checkpoint_dir=checkpoint_dir,
wait_for_checkpoint=False)
self.assertFalse(initialized)
self.assertEqual(
False,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("v:0")).eval(
session=sess))
self.assertEqual(
True,
tf.is_variable_initialized(sess.graph.get_tensor_by_name("w:0")).eval(
session=sess))
self.assertEquals(1, sess.run(w))
示例14: initialize_uninitialized
def initialize_uninitialized(sess = None):
"""
Initialize unitialized variables, doesn't affect those already initialized
:param sess: in which session to initialize stuff. Defaults to tf.get_default_session()
"""
sess = sess or tf.get_default_session()
global_vars = tf.global_variables()
is_not_initialized = sess.run([tf.is_variable_initialized(var) for var in global_vars])
not_initialized_vars = [v for (v, f) in zip(global_vars, is_not_initialized) if not f]
if len(not_initialized_vars):
sess.run(tf.variables_initializer(not_initialized_vars))
示例15: save
def save(self, save_file_name = None):
variables = []
for i in self._vars:
if tf.is_variable_initialized(i).eval():
try:
variables.append((self.removeUUIDandColon(i.name),i.value().eval()))
except:
#TODO: Don't do this. Limit exceptions to known expected ones.
pass
if save_file_name is None:
save_file_name = self._file_name
with open(self._file_name, "wb") as file:
pkl.dump(variables, file)