当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.identity函数代码示例

本文整理汇总了Python中tensorflow.identity函数的典型用法代码示例。如果您正苦于以下问题:Python identity函数的具体用法?Python identity怎么用?Python identity使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了identity函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

def main():
    tf.set_random_seed(10)
    with tf.Session() as sess:
        rnn_cell = tf.nn.rnn_cell.LSTMCell(10)

        # defining initial state
        initial_state = rnn_cell.zero_state(4, dtype=tf.float32)

        inputs = tf.Variable(tf.random_uniform(shape = (4, 30, 100)), name='input')
        inputs = tf.identity(inputs, "input_node")

        # 'state' is a tensor of shape [batch_size, cell_state_size]
        outputs, state = tf.nn.dynamic_rnn(rnn_cell, inputs, initial_state=initial_state, dtype=tf.float32)

        y1 = tf.identity(outputs, 'outputs')
        y2 = tf.identity(state, 'state')

        t1 = tf.ones([4, 30, 10])
        t2 = tf.ones([4, 10])

        loss = tf.reduce_sum((y1 - t1) * (y1 - t1)) + tf.reduce_sum((y2 - t2) * (y2 - t2))
        tf.identity(loss, name = "lstm_loss")
        # tf.summary.FileWriter('/tmp/log', tf.get_default_graph())

        net_outputs = map(lambda x: tf.get_default_graph().get_tensor_by_name(x), argv[2].split(','))
        run_model(net_outputs, argv[1], None, argv[3] == 'True')
开发者ID:ru003ar,项目名称:BigDL,代码行数:26,代码来源:dynamic_lstm.py

示例2: testConstructionAndValue

  def testConstructionAndValue(self):
    with self.test_session() as sess:
      mu = [0.0, 0.1, 0.2]
      sigma = tf.constant([1.1, 1.2, 1.3])
      sigma2 = tf.constant([0.1, 0.2, 0.3])
      with self.assertRaisesRegexp(ValueError, 'No value type currently set'):
        prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)

      prior_0 = sg.DistributionTensor(
          distributions.Normal, mu=mu, sigma=sigma,
          dist_value_type=sg.SampleAndReshapeValue())

      with sg.value_type(sg.SampleAndReshapeValue()):
        prior = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)
        likelihood = sg.DistributionTensor(
            distributions.Normal, mu=prior, sigma=sigma2)

      coll = tf.get_collection(sg.STOCHASTIC_TENSOR_COLLECTION)
      self.assertEqual(coll, [prior_0, prior, likelihood])

      prior_0 = tf.identity(prior_0)
      prior = tf.identity(prior)  # Also works: tf.convert_to_tensor(prior)
      likelihood = tf.identity(likelihood)

      # Mostly a smoke test for now...
      prior_0_val, prior_val, _ = sess.run(
          [prior_0, prior, likelihood])

      self.assertEqual(prior_0_val.shape, prior_val.shape)
      # These are different random samples from the same distribution,
      # so the values should differ.
      self.assertGreater(np.abs(prior_0_val - prior_val).sum(), 1e-6)
开发者ID:285219011,项目名称:hello-world,代码行数:32,代码来源:stochastic_graph_test.py

示例3: testBatchedBijectorWithMLPTransform

 def testBatchedBijectorWithMLPTransform(self):
   x_ = np.random.normal(0., 1., (3, 8)).astype(np.float32)
   nvp = tfb.RealNVP(
       num_masked=4, validate_args=True, **self._real_nvp_kwargs)
   x = tf.constant(x_)
   forward_x = nvp.forward(x)
   # Use identity to invalidate cache.
   inverse_y = nvp.inverse(tf.identity(forward_x))
   forward_inverse_y = nvp.forward(inverse_y)
   fldj = nvp.forward_log_det_jacobian(x, event_ndims=1)
   # Use identity to invalidate cache.
   ildj = nvp.inverse_log_det_jacobian(tf.identity(forward_x), event_ndims=1)
   self.evaluate(tf.global_variables_initializer())
   [
       forward_x_,
       inverse_y_,
       forward_inverse_y_,
       ildj_,
       fldj_,
   ] = self.evaluate([
       forward_x,
       inverse_y,
       forward_inverse_y,
       ildj,
       fldj,
   ])
   self.assertEqual("real_nvp", nvp.name)
   self.assertAllClose(forward_x_, forward_inverse_y_, rtol=1e-4, atol=0.)
   self.assertAllClose(x_, inverse_y_, rtol=1e-4, atol=0.)
   self.assertAllClose(ildj_, -fldj_, rtol=1e-6, atol=0.)
开发者ID:asudomoeva,项目名称:probability,代码行数:30,代码来源:real_nvp_test.py

示例4: _fn

 def _fn(*args):
   p = tf.identity(proposal_log_prob_fn(*args), name="proposal_log_prob")
   t = tf.identity(target_log_prob_fn(*args), name="target_log_prob")
   dtype = p.dtype.base_dtype
   beta = tf.cast(iter_ + 1, dtype) / tf.cast(num_steps, dtype)
   return tf.identity(beta * t + (1. - beta) * p,
                      name="convex_combined_log_prob")
开发者ID:asudomoeva,项目名称:probability,代码行数:7,代码来源:sample_annealed_importance.py

示例5: _kl_entropy

 def _kl_entropy(self):
     """
     Add to Graph:
         1. KL divergence between old and new distributions
         2. Entropy of present policy given states and actions
     """
     log_det_cov_old = tf.reduce_sum(self.old_log_vars_ph)
     log_det_cov_new = tf.reduce_sum(self.log_vars)
     tr_old_new = tf.reduce_sum(tf.exp(self.old_log_vars_ph - self.log_vars))
     #KL Divergence formultivariate normal ditributions
     #https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions
     # log(sigma1/sigma0) = log(sigma1)-log(sigma0) 
     # tr: matrix trace
     self.kl = 0.5 * tf.reduce_mean(log_det_cov_new - log_det_cov_old + tr_old_new +
                                    # (mu1-mu0 )T*SIGMA^-1*(mu1-mu0):
                                    tf.reduce_sum(tf.square(self.means - self.old_means_ph) /
                                                  tf.exp(self.log_vars), axis=1) -
                                    self.act_dim)
                                    # k  = act_dim;
     self.kl = tf.identity(self.kl, name="kl")
                                    
     # simply the entropy formula of a multivariate normal distribution
     # https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Entropy
     self.entropy = 0.5 * (self.act_dim * (np.log(2 * np.pi) + 1) +
                           tf.reduce_sum(self.log_vars))
     self.entropy = tf.identity(self.entropy, name="entropy")
开发者ID:projectchrono,项目名称:chrono,代码行数:26,代码来源:policy.py

示例6: mean_var_with_update

    def mean_var_with_update():
        ema_apply_op = ema.apply([batch_mean, batch_var])
        pop_mean_op = tf.assign(pop_mean, ema.average(batch_mean))
        pop_var_op = tf.assign(pop_var, ema.average(batch_var))

        with tf.control_dependencies([ema_apply_op, pop_mean_op, pop_var_op]):
            return tf.identity(batch_mean), tf.identity(batch_var)
开发者ID:deworrall92,项目名称:groupConvolutions,代码行数:7,代码来源:BSD_model.py

示例7: _update_policy_step

  def _update_policy_step(self, observ, action, old_mean, old_logstd, advantage, length):
    """Compute the current policy loss and perform a gradient update step.

    Args:
      observ: Sequences of observations.
      action: Sequences of actions.
      old_mean: Sequences of action means of the behavioral policy.
      old_logstd: Sequences of action log stddevs of the behavioral policy.
      advantage: Sequences of advantages.
      length: Batch of sequence lengths.

    Returns:
      Tuple of loss tensor and summary tensor.
    """
    network = self._network(observ, length)
    loss, summary = self._policy_loss(network.mean, network.logstd, old_mean, old_logstd, action,
                                      advantage, length)
    gradients, variables = (zip(*self._policy_optimizer.compute_gradients(loss)))
    optimize = self._policy_optimizer.apply_gradients(zip(gradients, variables))
    summary = tf.summary.merge([
        summary,
        tf.summary.scalar('gradient_norm', tf.global_norm(gradients)),
        utility.gradient_summaries(zip(gradients, variables), dict(policy=r'.*'))
    ])
    with tf.control_dependencies([optimize]):
      return [tf.identity(loss), tf.identity(summary)]
开发者ID:bulletphysics,项目名称:bullet3,代码行数:26,代码来源:algorithm.py

示例8: _test_no_active_dims

def _test_no_active_dims(Kern, sess):
    S, N, M, D = 5, 4, 3, 2
    X1 = tf.identity(np.random.randn(S, N, D))
    X2 = tf.identity(np.random.randn(S, M, D))
    kern = Kern(D) + gpflow.kernels.White(2)

    compare_vs_map(X1, X2, kern, sess)
开发者ID:sanket-kamthe,项目名称:GPflow,代码行数:7,代码来源:test_broadcasting.py

示例9: setup

  def setup(self):
    """Sets up all components of the computation graph."""

    self.x, self.y = self.get_xy_placeholders()

    with tf.variable_scope('core', reuse=None):
      self.loss, self.gradient_ops = self.train(self.x, self.y)
    with tf.variable_scope('core', reuse=True):
      self.y_preds = self.eval(self.x, self.y)

    # setup memory "reset" ops
    (self.mem_keys, self.mem_vals,
     self.mem_age, self.recent_idx) = self.memory.get()
    self.mem_keys_reset = tf.placeholder(self.mem_keys.dtype,
                                         tf.identity(self.mem_keys).shape)
    self.mem_vals_reset = tf.placeholder(self.mem_vals.dtype,
                                         tf.identity(self.mem_vals).shape)
    self.mem_age_reset = tf.placeholder(self.mem_age.dtype,
                                        tf.identity(self.mem_age).shape)
    self.recent_idx_reset = tf.placeholder(self.recent_idx.dtype,
                                           tf.identity(self.recent_idx).shape)
    self.mem_reset_op = self.memory.set(self.mem_keys_reset,
                                        self.mem_vals_reset,
                                        self.mem_age_reset,
                                        None)
开发者ID:JiweiHe,项目名称:models,代码行数:25,代码来源:model.py

示例10: mean_var_with_update

 def mean_var_with_update():
     if self.ema_apply_op is None:
         self.ema_apply_op = self.ema.apply(
             [self.batch_mean, self.batch_var])
     with tf.control_dependencies([self.ema_apply_op]):
         return tf.identity(self.batch_mean), \
             tf.identity(self.batch_var)
开发者ID:renmengye,项目名称:tfplus,代码行数:7,代码来源:batch_norm.py

示例11: __build_game_state_as_update_graph

    def __build_game_state_as_update_graph(self, training, global_step):
        print('game_state_as_update')
        with tf.variable_scope('game_state_as_update') as variable_scope:
            seed = tf.placeholder(
                tf.int64,
                [self.seed_size],
                'seed')
            update_statistic = tf.placeholder(
                tf.float32,
                [None, self.update_statistic_size],
                'update_statistic')

            with tf.variable_scope('transformation') as \
                    transformation_variable_scope:
                signal = self._game_state_as_update(
                    training, global_step,
                    seed, update_statistic)

            output = tf.identity(signal, 'output')

            output_gradient = tf.placeholder(
                tf.float32,
                [None, self.update_size],
                'output_gradient')

            update_statistic_gradient, = tf.gradients(
                output, [update_statistic], output_gradient)
            tf.identity(
                update_statistic_gradient, 'update_statistic_gradient')

            self.__model_gradients(
                variable_scope, transformation_variable_scope, output,
                output_gradient)
开发者ID:thomasste,项目名称:ugtsa,代码行数:33,代码来源:model_builder.py

示例12: testBijector

 def testBijector(self):
   x_ = np.arange(3 * 4 * 2).astype(np.float32).reshape(3, 4, 2)
   with self.test_session() as sess:
     ma = tfb.MaskedAutoregressiveFlow(
         validate_args=True, **self._autoregressive_flow_kwargs)
     x = tf.constant(x_)
     forward_x = ma.forward(x)
     # Use identity to invalidate cache.
     inverse_y = ma.inverse(tf.identity(forward_x))
     fldj = ma.forward_log_det_jacobian(x, event_ndims=1)
     # Use identity to invalidate cache.
     ildj = ma.inverse_log_det_jacobian(tf.identity(forward_x), event_ndims=1)
     tf.global_variables_initializer().run()
     [
         forward_x_,
         inverse_y_,
         ildj_,
         fldj_,
     ] = sess.run([
         forward_x,
         inverse_y,
         ildj,
         fldj,
     ])
     self.assertEqual("masked_autoregressive_flow", ma.name)
     self.assertAllClose(forward_x_, forward_x_, rtol=1e-6, atol=0.)
     self.assertAllClose(x_, inverse_y_, rtol=1e-5, atol=0.)
     self.assertAllClose(ildj_, -fldj_, rtol=1e-6, atol=0.)
开发者ID:lewisKit,项目名称:probability,代码行数:28,代码来源:masked_autoregressive_test.py

示例13: __init__

 def __init__(self, net, scope, classes, boxes_per_cell, training=False):
     _, self.cell_height, self.cell_width, _ = tf.get_default_graph().get_tensor_by_name(scope + '/conv:0').get_shape().as_list()
     cells = self.cell_height * self.cell_width
     with tf.name_scope('regress'):
         with tf.name_scope('inputs'):
             end = cells * classes
             self.prob = tf.reshape(net[:, :end], [-1, cells, 1, classes], name='prob')
             inputs_remaining = tf.reshape(net[:, end:], [-1, cells, boxes_per_cell, 5], name='inputs_remaining')
             self.iou = tf.identity(inputs_remaining[:, :, :, 0], name='iou')
             self.offset_xy = tf.identity(inputs_remaining[:, :, :, 1:3], name='offset_xy')
             wh01_sqrt_base = tf.identity(inputs_remaining[:, :, :, 3:], name='wh01_sqrt_base')
         wh01 = tf.square(wh01_sqrt_base, name='wh01')
         wh01_sqrt = tf.abs(wh01_sqrt_base, name='wh01_sqrt')
         self.coords = tf.concat([self.offset_xy, wh01_sqrt], -1, name='coords')
         self.wh = tf.identity(wh01 * [self.cell_width, self.cell_height], name='wh')
         _wh = self.wh / 2
         self.offset_xy_min = tf.identity(self.offset_xy - _wh, name='offset_xy_min')
         self.offset_xy_max = tf.identity(self.offset_xy + _wh, name='offset_xy_max')
         self.areas = tf.reduce_prod(self.wh, -1, name='areas')
     if not training:
         with tf.name_scope('detection'):
             cell_xy = calc_cell_xy(self.cell_height, self.cell_width).reshape([1, cells, 1, 2])
             self.xy = tf.identity(cell_xy + self.offset_xy, name='xy')
             self.xy_min = tf.identity(cell_xy + self.offset_xy_min, name='xy_min')
             self.xy_max = tf.identity(cell_xy + self.offset_xy_max, name='xy_max')
             self.conf = tf.identity(tf.expand_dims(self.iou, -1) * self.prob, name='conf')
     self.inputs = net
     self.classes = classes
     self.boxes_per_cell = boxes_per_cell
开发者ID:happog,项目名称:yolo-tf,代码行数:29,代码来源:__init__.py

示例14: test_raises_if_rank_is_not_integer_dynamic

 def test_raises_if_rank_is_not_integer_dynamic(self):
     with self.test_session():
         tensor = tf.constant([1, 2], dtype=tf.float32, name="my_tensor")
         rank_tensor = tf.placeholder(tf.float32, name="rank_tensor")
         with self.assertRaisesRegexp(TypeError, "must be of type <dtype: 'int32'>"):
             with tf.control_dependencies([tf.assert_rank(tensor, rank_tensor)]):
                 tf.identity(tensor).eval(feed_dict={rank_tensor: 0.5})
开发者ID:BloodD,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例15: test_rank_zero_tensor_raises_if_rank_too_small_static_rank

 def test_rank_zero_tensor_raises_if_rank_too_small_static_rank(self):
     with self.test_session():
         tensor = tf.constant(1, name="my_tensor")
         desired_rank = 1
         with self.assertRaisesRegexp(ValueError, "fail.*my_tensor.*must have rank 1"):
             with tf.control_dependencies([tf.assert_rank(tensor, desired_rank, message="fail")]):
                 tf.identity(tensor).eval()
开发者ID:BloodD,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py


注:本文中的tensorflow.identity函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。