当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.greater函数代码示例

本文整理汇总了Python中tensorflow.greater函数的典型用法代码示例。如果您正苦于以下问题:Python greater函数的具体用法?Python greater怎么用?Python greater使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了greater函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: thresholding

def thresholding(inputs):
    # find the mean for each example in the batch
    mean_output = tf.reduce_mean(inputs, axis=1)

    # scale each mean based on a factor
    threshold_scalar = tf.Variable(utils.threshold_scalar, tf.float32)
    scaled_mean = tf.scalar_mul(threshold_scalar, mean_output)
    scaled_mean = tf.reshape(scaled_mean, [utils.batch_size])

    # setup matrix for
    min_thresh_for_max = tf.fill([utils.batch_size], 0.05)
    max_thresh_for_min = tf.fill([utils.batch_size], 0.15)   #0.4
    thresholds = tf.maximum(min_thresh_for_max, scaled_mean)
    thresholds = tf.minimum(max_thresh_for_min, thresholds)

    # zero values under the thresholds using bitmask
    thresholds = tf.reshape(thresholds, [128, 1, 1])

    threshold_mask = tf.cast(tf.greater(inputs, thresholds), tf.float32)
    thresholded_input = tf.multiply(inputs, threshold_mask)

    # peak picking
    # select beats by x[i-1] < x[i] > x[i+1] (local maximum)
    x_minus_1 = tf.cast(tf.greater(thresholded_input, tf.manip.roll(thresholded_input, shift=-1, axis=1)), tf.float32)
    x_plus_1 = tf.cast(tf.greater(thresholded_input, tf.manip.roll(thresholded_input, shift=1, axis=1)), tf.float32)
    output = tf.multiply(x_minus_1, x_plus_1)


    return output
开发者ID:nearlyeveryone,项目名称:bpm,代码行数:29,代码来源:bpm_estimator.py

示例2: set_logp_to_neg_inf

def set_logp_to_neg_inf(X, logp, bounds):
    """Set `logp` to negative infinity when `X` is outside the allowed bounds.

    # Arguments
        X: tensorflow.Tensor
            The variable to apply the bounds to
        logp: tensorflow.Tensor
            The log probability corrosponding to `X`
        bounds: list of `Region` objects
            The regions corrosponding to allowed regions of `X`

    # Returns
        logp: tensorflow.Tensor
            The newly bounded log probability
    """
    conditions = []
    for l, u in bounds:
        lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
        upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)

        if not lower_is_neg_inf and upper_is_pos_inf:
            conditions.append(tf.greater(X, l))
        elif lower_is_neg_inf and not upper_is_pos_inf:
            conditions.append(tf.less(X, u))
        elif not (lower_is_neg_inf or upper_is_pos_inf):
            conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))

    if len(conditions) > 0:
        is_inside_bounds = conditions[0]
        for condition in conditions[1:]:
            is_inside_bounds = tf.logical_or(is_inside_bounds, condition)

        logp = tf.select(is_inside_bounds, logp, tf.fill(tf.shape(X), config.dtype(-np.inf)))

    return logp
开发者ID:tensorprob,项目名称:tensorprob,代码行数:35,代码来源:utilities.py

示例3: _variance

  def _variance(self):
    # We need to put the tf.where inside the outer tf.where to ensure we never
    # hit a NaN in the gradient.
    denom = tf.where(tf.greater(self.df, 2.),
                     self.df - 2.,
                     tf.ones_like(self.df))
    # Abs(scale) superfluous.
    var = (tf.ones(self.batch_shape_tensor(), dtype=self.dtype) *
           tf.square(self.scale) * self.df / denom)
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = tf.where(
        self.df > tf.fill(self.batch_shape_tensor(), 2.),
        var,
        tf.fill(self.batch_shape_tensor(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return tf.where(
          tf.greater(
              self.df,
              tf.ones(self.batch_shape_tensor(), dtype=self.dtype)),
          result_where_defined,
          tf.fill(self.batch_shape_tensor(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              tf.assert_less(
                  tf.ones([], dtype=self.dtype),
                  self.df,
                  message="variance not defined for components of df <= 1"),
          ],
          result_where_defined)
开发者ID:asudomoeva,项目名称:probability,代码行数:33,代码来源:student_t.py

示例4: get_losses

                def get_losses(obj_mask):
                  """Get motion constraint loss."""
                  # Find height of segment.
                  coords = tf.where(tf.greater(  # Shape (num_true, 2=yx)
                      obj_mask[:, :, 0], tf.constant(0.5, dtype=tf.float32)))
                  y_max = tf.reduce_max(coords[:, 0])
                  y_min = tf.reduce_min(coords[:, 0])
                  seg_height = y_max - y_min
                  f_y = self.intrinsic_mat[i, 0, 1, 1]
                  approx_depth = ((f_y * self.global_scale_var) /
                                  tf.to_float(seg_height))
                  reference_pred = tf.boolean_mask(
                      depth_pred, tf.greater(
                          tf.reshape(obj_mask[:, :, 0],
                                     (self.img_height, self.img_width, 1)),
                          tf.constant(0.5, dtype=tf.float32)))

                  # Establish loss on approx_depth, a scalar, and
                  # reference_pred, our dense prediction. Normalize both to
                  # prevent degenerative depth shrinking.
                  global_mean_depth_pred = tf.reduce_mean(depth_pred)
                  reference_pred /= global_mean_depth_pred
                  approx_depth /= global_mean_depth_pred
                  spatial_err = tf.abs(reference_pred - approx_depth)
                  mean_spatial_err = tf.reduce_mean(spatial_err)
                  return mean_spatial_err
开发者ID:pcm17,项目名称:models,代码行数:26,代码来源:model.py

示例5: IoULoss

 def IoULoss(self, pd, gt):
     mask = tf.cast(
         tf.greater(tf.reduce_sum(
             tf.cast(tf.greater(gt, 0), tf.int8), 3), 3),
         tf.float32
     )
     npd = tf.transpose(pd, [3, 0, 1, 2])
     ngt = tf.transpose(gt, [3, 0, 1, 2])
     area_x = tf.mul(
         tf.add(tf.gather(npd, 0), tf.gather(npd, 2)),
         tf.add(tf.gather(npd, 1), tf.gather(npd, 3)),
     )
     area_g = tf.mul(
         tf.add(tf.gather(ngt, 0), tf.gather(ngt, 2)),
         tf.add(tf.gather(ngt, 1), tf.gather(ngt, 3)),
     )
     w_overlap = tf.maximum(tf.constant(0, tf.float32), tf.add(
         tf.minimum(tf.gather(npd, 0), tf.gather(ngt, 0)),
         tf.minimum(tf.gather(npd, 2), tf.gather(ngt, 2)),
     ))
     h_overlap = tf.maximum(tf.constant(0, tf.float32), tf.add(
         tf.minimum(tf.gather(npd, 1), tf.gather(ngt, 1)),
         tf.minimum(tf.gather(npd, 3), tf.gather(ngt, 3)),
     ))
     area_overlap = tf.mul(w_overlap, h_overlap)
     area_u = tf.sub(tf.add(area_x, area_g), area_overlap)
     iou = tf.div(area_overlap, tf.add(area_u, tf.constant(1, tf.float32)))
     iou = tf.maximum(iou, tf.constant(1e-4, tf.float32))
     cost = -tf.log(iou)
     cost = tf.mul(cost, mask)
     cost = tf.reduce_sum(cost)
     return cost
开发者ID:hewr1993,项目名称:nn_expr,代码行数:32,代码来源:run.py

示例6: prune_outside_window

def prune_outside_window(boxlist, window, scope=None):
  """Prunes bounding boxes that fall outside a given window.

  This function prunes bounding boxes that even partially fall outside the given
  window. See also clip_to_window which only prunes bounding boxes that fall
  completely outside the window, and clips any bounding boxes that partially
  overflow.

  Args:
    boxlist: a BoxList holding M_in boxes.
    window: a float tensor of shape [4] representing [ymin, xmin, ymax, xmax]
      of the window
    scope: name scope.

  Returns:
    pruned_corners: a tensor with shape [M_out, 4] where M_out <= M_in
    valid_indices: a tensor with shape [M_out] indexing the valid bounding boxes
     in the input tensor.
  """
  with tf.name_scope(scope, 'PruneOutsideWindow'):
    y_min, x_min, y_max, x_max = tf.split(
        value=boxlist.get(), num_or_size_splits=4, axis=1)
    win_y_min, win_x_min, win_y_max, win_x_max = tf.unstack(window)
    coordinate_violations = tf.concat([
        tf.less(y_min, win_y_min), tf.less(x_min, win_x_min),
        tf.greater(y_max, win_y_max), tf.greater(x_max, win_x_max)
    ], 1)
    valid_indices = tf.reshape(
        tf.where(tf.logical_not(tf.reduce_any(coordinate_violations, 1))), [-1])
    return gather(boxlist, valid_indices), valid_indices
开发者ID:NoPointExc,项目名称:models,代码行数:30,代码来源:box_list_ops.py

示例7: _compute_precision_recall

def _compute_precision_recall(input_layer, labels, threshold,
                              per_example_weights):
  """Returns the numerator of both, the denominator of precision and recall."""

  # To apply per_example_weights, we need to collapse each row to a scalar, but
  # we really want the sum.
  labels.get_shape().assert_is_compatible_with(input_layer.get_shape())
  relevant = tf.to_float(tf.greater(labels, 0))
  retrieved = tf.to_float(tf.greater(input_layer, threshold))
  selected = relevant * retrieved

  if per_example_weights:
    per_example_weights = tf.convert_to_tensor(per_example_weights,
                                               name='per_example_weights')
    if selected.get_shape().dims:
      per_example_weights.get_shape().assert_is_compatible_with(
          [selected.get_shape().dims[0]])
    else:
      per_example_weights.get_shape().assert_is_compatible_with([None])
    per_example_weights = tf.to_float(tf.greater(per_example_weights, 0))
    selected = functions.reduce_batch_sum(selected) * per_example_weights
    relevant = functions.reduce_batch_sum(relevant) * per_example_weights
    retrieved = functions.reduce_batch_sum(retrieved) * per_example_weights
  sum_relevant = tf.reduce_sum(relevant)
  sum_retrieved = tf.reduce_sum(retrieved)
  selected = tf.reduce_sum(selected)
  return selected, sum_retrieved, sum_relevant
开发者ID:roger2000hk,项目名称:prettytensor,代码行数:27,代码来源:pretty_tensor_loss_methods.py

示例8: sanitize

  def sanitize(self, x, eps_delta, sigma=None,
               option=ClipOption(None, None), tensor_name=None,
               num_examples=None, add_noise=True):
    """Sanitize the given tensor.

    This santize a given tensor by first applying l2 norm clipping and then
    adding Gaussian noise. It calls the privacy accountant for updating the
    privacy spending.

    Args:
      x: the tensor to sanitize.
      eps_delta: a pair of eps, delta for (eps,delta)-DP. Use it to
        compute sigma if sigma is None.
      sigma: if sigma is not None, use sigma.
      option: a ClipOption which, if supplied, used for
        clipping and adding noise.
      tensor_name: the name of the tensor.
      num_examples: if None, use the number of "rows" of x.
      add_noise: if True, then add noise, else just clip.
    Returns:
      a pair of sanitized tensor and the operation to accumulate privacy
      spending.
    """

    if sigma is None:
      # pylint: disable=unpacking-non-sequence
      eps, delta = eps_delta
      with tf.control_dependencies(
          [tf.Assert(tf.greater(eps, 0),
                     ["eps needs to be greater than 0"]),
           tf.Assert(tf.greater(delta, 0),
                     ["delta needs to be greater than 0"])]):
        # The following formula is taken from
        #   Dwork and Roth, The Algorithmic Foundations of Differential
        #   Privacy, Appendix A.
        #   http://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
        sigma = tf.sqrt(2.0 * tf.log(1.25 / delta)) / eps

    l2norm_bound, clip = option
    if l2norm_bound is None:
      l2norm_bound, clip = self._default_option
      if ((tensor_name is not None) and
          (tensor_name in self._options)):
        l2norm_bound, clip = self._options[tensor_name]
    if clip:
      x = utils.BatchClipByL2norm(x, l2norm_bound)

    if add_noise:
      if num_examples is None:
        num_examples = tf.slice(tf.shape(x), [0], [1])
      privacy_accum_op = self._accountant.accumulate_privacy_spending(
          eps_delta, sigma, num_examples)
      with tf.control_dependencies([privacy_accum_op]):
        saned_x = utils.AddGaussianNoise(tf.reduce_sum(x, 0),
                                         sigma * l2norm_bound)
    else:
      saned_x = tf.reduce_sum(x, 0)
    return saned_x
开发者ID:TrendonixNetwork,项目名称:ProjectCybonix,代码行数:58,代码来源:sanitizer.py

示例9: _get_valid_sample_fraction

def _get_valid_sample_fraction(labels, p=0):
    """return fraction of non-negative examples, the ignored examples have been marked as negative"""
    num_valid = tf.reduce_sum(tf.cast(tf.greater_equal(labels, p), tf.float32))
    num_example = tf.cast(tf.size(labels), tf.float32)
    frac = tf.cond(tf.greater(num_example, 0), lambda:num_valid / num_example,  
            lambda: tf.cast(0, tf.float32))
    frac_ = tf.cond(tf.greater(num_valid, 0), lambda:num_example / num_valid, 
            lambda: tf.cast(0, tf.float32))
    return frac, frac_
开发者ID:imyourm8,项目名称:FastMaskRCNN,代码行数:9,代码来源:pyramid_network.py

示例10: style_loss

def style_loss(CNN_structure, const_layers, var_layers, content_segs, style_segs, weight):
    loss_styles = []
    layer_count = float(len(const_layers))
    layer_index = 0

    _, content_seg_height, content_seg_width, _ = content_segs[0].get_shape().as_list()
    _, style_seg_height, style_seg_width, _ = style_segs[0].get_shape().as_list()
    for layer_name in CNN_structure:
        layer_name = layer_name[layer_name.find("/") + 1:]

        # downsampling segmentation
        if "pool" in layer_name:
            content_seg_width, content_seg_height = int(math.ceil(content_seg_width / 2)), int(math.ceil(content_seg_height / 2))
            style_seg_width, style_seg_height = int(math.ceil(style_seg_width / 2)), int(math.ceil(style_seg_height / 2))

            for i in xrange(len(content_segs)):
                content_segs[i] = tf.image.resize_bilinear(content_segs[i], tf.constant((content_seg_height, content_seg_width)))
                style_segs[i] = tf.image.resize_bilinear(style_segs[i], tf.constant((style_seg_height, style_seg_width)))

        elif "conv" in layer_name:
            for i in xrange(len(content_segs)):
                # have some differences on border with torch
                content_segs[i] = tf.nn.avg_pool(tf.pad(content_segs[i], [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT"), \
                ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='VALID')
                style_segs[i] = tf.nn.avg_pool(tf.pad(style_segs[i], [[0, 0], [1, 1], [1, 1], [0, 0]], "CONSTANT"), \
                ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='VALID')

        if layer_name == var_layers[layer_index].name[var_layers[layer_index].name.find("/") + 1:]:
            print("Setting up style layer: <{}>".format(layer_name))
            const_layer = const_layers[layer_index]
            var_layer = var_layers[layer_index]

            layer_index = layer_index + 1

            layer_style_loss = 0.0
            for content_seg, style_seg in zip(content_segs, style_segs):
                gram_matrix_const = gram_matrix(tf.multiply(const_layer, style_seg))
                style_mask_mean   = tf.reduce_mean(style_seg)
                gram_matrix_const = tf.cond(tf.greater(style_mask_mean, 0.),
                                        lambda: gram_matrix_const / (tf.to_float(tf.size(const_layer)) * style_mask_mean),
                                        lambda: gram_matrix_const
                                    )

                gram_matrix_var   = gram_matrix(tf.multiply(var_layer, content_seg))
                content_mask_mean = tf.reduce_mean(content_seg)
                gram_matrix_var   = tf.cond(tf.greater(content_mask_mean, 0.),
                                        lambda: gram_matrix_var / (tf.to_float(tf.size(var_layer)) * content_mask_mean),
                                        lambda: gram_matrix_var
                                    )

                diff_style_sum    = tf.reduce_mean(tf.squared_difference(gram_matrix_const, gram_matrix_var)) * content_mask_mean

                layer_style_loss += diff_style_sum

            loss_styles.append(layer_style_loss * weight)
    return loss_styles
开发者ID:4ever911,项目名称:deep-photo-styletransfer-tf,代码行数:56,代码来源:photo_style.py

示例11: get_position_cross_clf_label

def get_position_cross_clf_label(positions, seq_length, ans_avg_len):
  start_labels = tf.reshape(positions[:, 0], [-1])  # positions shape: [batch_size, 2] => [batch_size]
  end_labels = tf.reshape(positions[:, 1], [-1])
  ans_len = end_labels - start_labels +1  # [batch_size] # 超过ans_avg_len则为avg_len

  mask = tf.cast(tf.greater(ans_len, ans_avg_len), tf.int32) * (
            tf.zeros_like(ans_len, dtype=tf.int32) + ans_avg_len)

  ans_len = ans_len * (1 - tf.cast(tf.greater(ans_len, ans_avg_len), tf.int32)) + mask
  return start_labels * ans_avg_len + ans_len - 1
开发者ID:Accagain2014,项目名称:ML,代码行数:10,代码来源:tensorflow_examples.py

示例12: _match_when_rows_are_non_empty

    def _match_when_rows_are_non_empty():
      """Performs matching when the rows of similarity matrix are non empty.

      Returns:
        matches:  int32 tensor indicating the row each column matches to.
      """
      # Matches for each column
      matches = tf.argmax(similarity_matrix, 0, output_type=tf.int32)

      # Deal with matched and unmatched threshold
      if self._matched_threshold is not None:
        # Get logical indices of ignored and unmatched columns as tf.int64
        matched_vals = tf.reduce_max(similarity_matrix, 0)
        below_unmatched_threshold = tf.greater(self._unmatched_threshold,
                                               matched_vals)
        between_thresholds = tf.logical_and(
            tf.greater_equal(matched_vals, self._unmatched_threshold),
            tf.greater(self._matched_threshold, matched_vals))

        if self._negatives_lower_than_unmatched:
          matches = self._set_values_using_indicator(matches,
                                                     below_unmatched_threshold,
                                                     -1)
          matches = self._set_values_using_indicator(matches,
                                                     between_thresholds,
                                                     -2)
        else:
          matches = self._set_values_using_indicator(matches,
                                                     below_unmatched_threshold,
                                                     -2)
          matches = self._set_values_using_indicator(matches,
                                                     between_thresholds,
                                                     -1)

      if self._force_match_for_each_row:
        similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape(
            similarity_matrix)
        force_match_column_ids = tf.argmax(similarity_matrix, 1,
                                           output_type=tf.int32)
        force_match_column_indicators = (
            tf.one_hot(
                force_match_column_ids, depth=similarity_matrix_shape[1]) *
            tf.cast(tf.expand_dims(valid_rows, axis=-1), dtype=tf.float32))
        force_match_row_ids = tf.argmax(force_match_column_indicators, 0,
                                        output_type=tf.int32)
        force_match_column_mask = tf.cast(
            tf.reduce_max(force_match_column_indicators, 0), tf.bool)
        final_matches = tf.where(force_match_column_mask,
                                 force_match_row_ids, matches)
        return final_matches
      else:
        return matches
开发者ID:pcm17,项目名称:models,代码行数:52,代码来源:argmax_matcher.py

示例13: _compute_alpha

def _compute_alpha(x):
    """
    Computing the scale parameter.
    """
    threshold = _compute_threshold(x)
    alpha1_temp1 = tf.where(tf.greater(x, threshold), x, tf.zeros_like(x, tf.float32))
    alpha1_temp2 = tf.where(tf.less(x, -threshold), x, tf.zeros_like(x, tf.float32))
    alpha_array = tf.add(alpha1_temp1, alpha1_temp2, name=None)
    alpha_array_abs = tf.abs(alpha_array)
    alpha_array_abs1 = tf.where(tf.greater(alpha_array_abs, 0), tf.ones_like(alpha_array_abs, tf.float32), tf.zeros_like(alpha_array_abs, tf.float32))
    alpha_sum = tf.reduce_sum(alpha_array_abs)
    n = tf.reduce_sum(alpha_array_abs1)
    alpha = tf.div(alpha_sum, n)
    return alpha
开发者ID:dccforever,项目名称:tensorlayer,代码行数:14,代码来源:binary.py

示例14: _match_when_rows_are_non_empty

    def _match_when_rows_are_non_empty():
      """Performs matching when the rows of similarity matrix are non empty.

      Returns:
        matches:  int32 tensor indicating the row each column matches to.
      """
      # Matches for each column
      matches = tf.argmax(similarity_matrix, 0)

      # Deal with matched and unmatched threshold
      if self._matched_threshold is not None:
        # Get logical indices of ignored and unmatched columns as tf.int64
        matched_vals = tf.reduce_max(similarity_matrix, 0)
        below_unmatched_threshold = tf.greater(self._unmatched_threshold,
                                               matched_vals)
        between_thresholds = tf.logical_and(
            tf.greater_equal(matched_vals, self._unmatched_threshold),
            tf.greater(self._matched_threshold, matched_vals))

        if self._negatives_lower_than_unmatched:
          matches = self._set_values_using_indicator(matches,
                                                     below_unmatched_threshold,
                                                     -1)
          matches = self._set_values_using_indicator(matches,
                                                     between_thresholds,
                                                     -2)
        else:
          matches = self._set_values_using_indicator(matches,
                                                     below_unmatched_threshold,
                                                     -2)
          matches = self._set_values_using_indicator(matches,
                                                     between_thresholds,
                                                     -1)

      if self._force_match_for_each_row:
        forced_matches_ids = tf.cast(tf.argmax(similarity_matrix, 1), tf.int32)

        # Set matches[forced_matches_ids] = [0, ..., R], R is number of rows.
        row_range = tf.range(tf.shape(similarity_matrix)[0])
        col_range = tf.range(tf.shape(similarity_matrix)[1])
        forced_matches_values = tf.cast(row_range, matches.dtype)
        keep_matches_ids, _ = tf.setdiff1d(col_range, forced_matches_ids)
        keep_matches_values = tf.gather(matches, keep_matches_ids)
        matches = tf.dynamic_stitch(
            [forced_matches_ids,
             keep_matches_ids], [forced_matches_values, keep_matches_values])

      return tf.cast(matches, tf.int32)
开发者ID:DaRealLazyPanda,项目名称:models,代码行数:48,代码来源:argmax_matcher.py

示例15: do_report

    def do_report():
        r = sess.run([best,
                      correct,
                      tf.greater(y[:, 0], 0),
                      y_[:, 0],
                      digits_loss,
                      presence_loss,
                      cross_entropy],
                     feed_dict={x: test_xs, y_: test_ys})
        num_correct = numpy.sum(
                        numpy.logical_or(
                            numpy.all(r[0] == r[1], axis=1),
                            numpy.logical_and(r[2] < 0.5,
                                              r[3] < 0.5)))
        r_short = (r[0][:190], r[1][:190], r[2][:190], r[3][:190])
        for b, c, pb, pc in zip(*r_short):
            print "{} {} <-> {} {}".format(vec_to_plate(c), pc,
                                           vec_to_plate(b), float(pb))
        num_p_correct = numpy.sum(r[2] == r[3])

        print ("B{:3d} {:2.02f}% {:02.02f}% loss: {} "
               "(digits: {}, presence: {}) |{}|").format(
            batch_idx,
            100. * num_correct / (len(r[0])),
            100. * num_p_correct / len(r[2]),
            r[6],
            r[4],
            r[5],
            "".join("X "[numpy.array_equal(b, c) or (not pb and not pc)]
                                           for b, c, pb, pc in zip(*r_short)))
开发者ID:GodBlessZhk,项目名称:deep-anpr,代码行数:30,代码来源:train.py


注:本文中的tensorflow.greater函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。