当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.get_variable_scope函数代码示例

本文整理汇总了Python中tensorflow.get_variable_scope函数的典型用法代码示例。如果您正苦于以下问题:Python get_variable_scope函数的具体用法?Python get_variable_scope怎么用?Python get_variable_scope使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了get_variable_scope函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: sequence_rnn_pad

def sequence_rnn_pad(rnn_cell, input_dim, length=50, first_train=True):
    state = rnn_cell.zero_state(1, tf.float32)
    outputs = []
    inputs = []
    states = []
    flags = []
    for i in range(length):
        if i > 0 or first_train == False:
            tf.get_variable_scope().reuse_variables()
        input = tf.placeholder('float', (1, input_dim))
        inputs.append(input)

        output_state = rnn_cell(input, state)
        (output, state) = output_state

        flag = tf.placeholder('float', (1, rnn_cell.state_size))
        state = flag * state
        flags.append(flag)
        # flag = tf.placeholder(tf.types.float32)
        # flags.append(flag)
        # state = flag * state

        states.append(state)
        outputs.append(output)

    # for i in range(length):
    #     flag = tf.Variable(0)
    #     flags.append(flag)
    #     states[i] = flag * states[i]

    return inputs, outputs, states, flags
开发者ID:xuqiongkai,项目名称:RNN,代码行数:31,代码来源:rnn.py

示例2: inference

def inference(x, n_batch, maxlen=None, n_hidden=None, n_out=None):
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.01)
        return tf.Variable(initial)

    def bias_variable(shape):
        initial = tf.zeros(shape, dtype=tf.float32)
        return tf.Variable(initial)

    cell = tf.contrib.rnn.GRUCell(n_hidden)
    initial_state = cell.zero_state(n_batch, tf.float32)

    state = initial_state
    outputs = []  # 과거의 은닉층에서 나온 출력을 저장한다
    with tf.variable_scope('GRU'):
        for t in range(maxlen):
            if t > 0:
                tf.get_variable_scope().reuse_variables()
            (cell_output, state) = cell(x[:, t, :], state)
            outputs.append(cell_output)

    output = outputs[-1]

    V = weight_variable([n_hidden, n_out])
    c = bias_variable([n_out])
    y = tf.matmul(output, V) + c  # 선형활성

    return y
开发者ID:wooramkang,项目名称:deep-learning-with-tensorflow,代码行数:28,代码来源:05_adding_problem_gru_tensorflow.py

示例3: make_net

 def make_net(self, input_images, input_measurements, input_actions, input_objectives, reuse=False):
     if reuse:
         tf.get_variable_scope().reuse_variables()
     
     self.fc_val_params = np.copy(self.fc_joint_params)
     self.fc_val_params['out_dims'][-1] = self.target_dim
     self.fc_adv_params = np.copy(self.fc_joint_params)
     self.fc_adv_params['out_dims'][-1] = len(self.net_discrete_actions) * self.target_dim
     p_img_conv = my_ops.conv_encoder(input_images, self.conv_params, 'p_img_conv', msra_coeff=0.9)
     p_img_fc = my_ops.fc_net(my_ops.flatten(p_img_conv), self.fc_img_params, 'p_img_fc', msra_coeff=0.9)
     p_meas_fc = my_ops.fc_net(input_measurements, self.fc_meas_params, 'p_meas_fc', msra_coeff=0.9)
     if isinstance(self.fc_obj_params, np.ndarray):
         p_obj_fc = my_ops.fc_net(input_objectives, self.fc_obj_params, 'p_obj_fc', msra_coeff=0.9)
         p_concat_fc = tf.concat([p_img_fc,p_meas_fc,p_obj_fc], 1)
     else:
         p_concat_fc = tf.concat([p_img_fc,p_meas_fc], 1)
         if self.random_objective_coeffs:
             raise Exception('Need fc_obj_params with randomized objectives')
         
     p_val_fc = my_ops.fc_net(p_concat_fc, self.fc_val_params, 'p_val_fc', last_linear=True, msra_coeff=0.9)
     p_adv_fc = my_ops.fc_net(p_concat_fc, self.fc_adv_params, 'p_adv_fc', last_linear=True, msra_coeff=0.9)
     
     adv_reshape = tf.reshape(p_adv_fc, [-1, len(self.net_discrete_actions), self.target_dim])
     
     pred_all_nomean = adv_reshape - tf.reduce_mean(adv_reshape, reduction_indices=1, keep_dims=True)
     pred_all = pred_all_nomean + tf.reshape(p_val_fc, [-1, 1, self.target_dim])
     pred_relevant = tf.boolean_mask(pred_all, tf.cast(input_actions, tf.bool))
     
     return pred_all, pred_relevant
开发者ID:johny-c,项目名称:DirectFuturePrediction,代码行数:29,代码来源:future_predictor_agent_advantage.py

示例4: rnn_decoder

def rnn_decoder(decoder_inputs, initial_state, cell, scope=None):
    """RNN Decoder that creates training and sampling sub-graphs.

    Args:
        decoder_inputs: Inputs for decoder, list of tensors.
                        This is used only in trianing sub-graph.
        initial_state: Initial state for the decoder.
        cell: RNN cell to use for decoder.
        scope: Scope to use, if None new will be produced.

    Returns:
        List of tensors for outputs and states for training and sampling sub-graphs.
    """
    with tf.variable_scope(scope or "dnn_decoder"):
        states, sampling_states = [initial_state], [initial_state]
        outputs, sampling_outputs = [], []
        with tf.op_scope([decoder_inputs, initial_state], "training"):
            for i, inp in enumerate(decoder_inputs):
                if i > 0:
                    tf.get_variable_scope().reuse_variables()
                output, new_state = cell(inp, states[-1])
                outputs.append(output)
                states.append(new_state)
        with tf.op_scope([initial_state], "sampling"):
            for i, _ in enumerate(decoder_inputs):
                if i == 0:
                    sampling_outputs.append(outputs[i])
                    sampling_states.append(states[i])
                else:
                    sampling_output, sampling_state = cell(
                        sampling_outputs[-1], sampling_states[-1])
                    sampling_outputs.append(sampling_output)
                    sampling_states.append(sampling_state)
    return outputs, states, sampling_outputs, sampling_states
开发者ID:4chin,项目名称:tensorflow,代码行数:34,代码来源:seq2seq_ops.py

示例5: testModelWithBucketsScopeAndLoss

  def testModelWithBucketsScopeAndLoss(self):
    """Test that variable scope reuse is not reset after model_with_buckets."""
    classes = 10
    buckets = [(4, 4), (8, 8)]

    with self.test_session():
      # Here comes a sample Seq2Seq model using GRU cells.
      def SampleGRUSeq2Seq(enc_inp, dec_inp, weights, per_example_loss):
        """Example sequence-to-sequence model that uses GRU cells."""
        def GRUSeq2Seq(enc_inp, dec_inp):
          cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.GRUCell(24)] * 2)
          return tf.nn.seq2seq.embedding_attention_seq2seq(
              enc_inp, dec_inp, cell, num_encoder_symbols=classes,
              num_decoder_symbols=classes, embedding_size=24)
        targets = [dec_inp[i+1] for i in range(len(dec_inp) - 1)] + [0]
        return tf.nn.seq2seq.model_with_buckets(
            enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq,
            per_example_loss=per_example_loss)

      # Now we construct the copy model.
      inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
      out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
      weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)]
      with tf.variable_scope("root"):
        _, losses1 = SampleGRUSeq2Seq(inp, out, weights, per_example_loss=False)
        # Now check that we did not accidentally set reuse.
        self.assertEqual(False, tf.get_variable_scope().reuse)
        # Construct one more model with per-example loss.
        tf.get_variable_scope().reuse_variables()
        _, losses2 = SampleGRUSeq2Seq(inp, out, weights, per_example_loss=True)
        # First loss is scalar, the second one is a 1-dimensinal tensor.
        self.assertEqual([], losses1[0].get_shape().as_list())
        self.assertEqual([None], losses2[0].get_shape().as_list())
开发者ID:AngleFork,项目名称:tensorflow,代码行数:33,代码来源:seq2seq_test.py

示例6: discriminator_z

 def discriminator_z(self, z, is_training=True, reuse_variables=False, num_hidden_layer_channels=(64, 32, 16), enable_bn=True):
     if reuse_variables:
         tf.get_variable_scope().reuse_variables()
     current = z
     for i in range(len(num_hidden_layer_channels)):
         name = 'D_z_fc' + str(i)
         current = fc(
                 input_vector=current,
                 num_output_length=num_hidden_layer_channels[i],
                 name=name
             )
         if enable_bn:
             name = 'D_z_bn' + str(i)
             current = tf.contrib.layers.batch_norm(
                 current,
                 scale=False,
                 is_training=is_training,
                 scope=name,
                 reuse=reuse_variables
             )
         current = tf.nn.relu(current)
     name = 'D_z_fc' + str(i+1)
     current = fc(
         input_vector=current,
         num_output_length=1,
         name=name
     )
     return tf.nn.sigmoid(current), current
开发者ID:linanseu,项目名称:ExprGAN,代码行数:28,代码来源:exprgan.py

示例7: lstm_fn

def lstm_fn(height):
    if height == FLAGS.num_lstm_layer-1:
        return tf.contrib.rnn.BasicLSTMCell(FLAGS.lstm_unit, state_is_tuple=True,
                                                       reuse = tf.get_variable_scope().reuse)
    else:
        return tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(FLAGS.lstm_unit, state_is_tuple=True,
                                                       reuse = tf.get_variable_scope().reuse), output_keep_prob=0.5)
开发者ID:NMAILKAIST,项目名称:deep-characterization-soft-sensor,代码行数:7,代码来源:model.py

示例8: full_model

    def full_model(data):
        latent_mean, latent_log_std = encoder(data)
        #latent_sample = lm_ae.reparam_normal_sample(latent_mean, latent_log_std, 'sample')
        latent_sample = latent_mean
        output_mean, output_log_std = decoder(latent_sample)
        disc_neg_logit = discriminator(latent_sample)
        tf.get_variable_scope().reuse_variables()
        latent_prior_sample = tf.random_normal(tf.shape(latent_mean))
        latent_prior_sample.set_shape(latent_mean.get_shape().as_list())
        disc_pos_logit = discriminator(latent_prior_sample)

        reconstruction_error = tf.reduce_sum(
            -0.5 * numpy.log(2 * numpy.pi) - output_log_std - 0.5 * tf.square(output_mean - data) / tf.exp(
                2.0 * output_log_std), reduction_indices=[1])

        disc_cross_entropy =   0.5*tf.nn.sigmoid_cross_entropy_with_logits(disc_neg_logit, tf.zeros(tf.shape(disc_neg_logit))) \
                            + 0.5*tf.nn.sigmoid_cross_entropy_with_logits(disc_pos_logit, tf.ones( tf.shape(disc_pos_logit)))

        num_copies = 85
        image = tf.reshape(
            tf.tile(tf.expand_dims(tf.transpose(tf.pack([data, output_mean, data - output_mean]), perm=[1, 0, 2]), 2),
                    [1, 1, num_copies, 1]), [-1, 3 * num_copies, SIG_LEN])
        lm_ae.summaries.image_summary('posterior_sample', tf.expand_dims(image, -1), 5)
        rough_error = tf.reduce_mean(tf.square(tf.reduce_mean(tf.square(output_mean), reduction_indices=[1]) - tf.reduce_mean(tf.square(data), reduction_indices=[1])))
        return output_mean, tf.reduce_mean(reconstruction_error), tf.reduce_mean(disc_cross_entropy), rough_error
开发者ID:NoahDStein,项目名称:NeuralNetSandbox,代码行数:25,代码来源:aae.py

示例9: update_target_network

def update_target_network(sess, network_name_train, network_name_target):
    '''
    This helper method copies all the trainable weights and biases from
    one DeepQNetwork to another. This method is used for synchronisation
    of the train and target Q-networks
    '''

    tf.get_variable_scope().reuse_variables()
    vars_source = tf.get_collection(
        tf.GraphKeys.TRAINABLE_VARIABLES, scope=network_name_train
    )
    copy_ops  = []
    check_ops = []

    for v in vars_source:
        # Note the [0:-2] to cut of the device placement
        v_source = tf.get_variable(v.name[0:-2])

        # Remove variable prefix (network name)
        var_name = v.name[v.name.find("/"):]
        v_target = tf.get_variable(network_name_target + var_name[0:-2])

        # print("Copying variable:")
        #print("  Source: " + v_source.name)
        #print("  Target: " + v_target.name)

        copy_ops.append(v_target.assign(v_source))
        check_ops.append(tf.equal(v_target, v_source))

    # Actual copying all the variables, check if the values are equal
    sess.run(copy_ops)
    check_res = sess.run(check_ops)
    for res in check_res:
        if not np.all(res):
            raise ValueError("Verification of tf.equal(var_train, var_target) failed.")
开发者ID:tomrunia,项目名称:DeepReinforcementLearning-Atari,代码行数:35,代码来源:qnetwork.py

示例10: build_train_graph

 def build_train_graph(self):
     init_c = tf.zeros([self.batch_size, self.lstm_cell.state_size[0]])
     init_h = tf.zeros([self.batch_size, self.lstm_cell.state_size[1]])
     initial_state = (init_c, init_h)
     image_emb = tf.matmul(self.inp_dict["features"], self.image_embedding[
                           'weights']) + self.image_embedding['biases']
     with tf.variable_scope("LSTM"):
         output, state = self.lstm_cell(image_emb, initial_state)
         loss = 0.0
         for i in range(1, self.num_timesteps):
             batch_embed = tf.nn.embedding_lookup(
                 self.word_embedding['weights'], self.inp_dict['captions'][
                     :, i - 1]) + self.word_embedding['biases']
             tf.get_variable_scope().reuse_variables()
             output, state = self.lstm_cell(batch_embed, state)
             words = tf.reshape(self.inp_dict['captions'][
                                :, i], shape=[self.batch_size, 1])
             onehot_encoded = tf.one_hot(indices=words, depth=len(
                 self.wtoidx), on_value=1, off_value=0, axis=-1)
             onehot_encoded = tf.reshape(onehot_encoded, shape=[
                                         self.batch_size, self.max_words])
             target_logit = tf.matmul(
                 output, self.target_word['weights']) + self.target_word['biases']
             cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
                 logits=target_logit, labels=onehot_encoded)
             cross_entropy = cross_entropy * self.inp_dict["mask"][:, i]
             current_loss = tf.reduce_sum(cross_entropy)
             loss = loss + current_loss
     loss = loss / tf.reduce_sum(self.inp_dict["mask"][:, 1:])
     # introducing L2 regularization in Loss/Cost Function
     # self.beta=0
     #l2_loss = self.beta * sum([tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not "Bias" in tf_var.name])
     #loss = tf.reduce_mean(loss+l2_loss)
     return loss, self.inp_dict
开发者ID:suryawanshishantanu6,项目名称:image-caption-generator,代码行数:34,代码来源:caption_generator.py

示例11: build_decode_graph

    def build_decode_graph(self):
        image_features = tf.placeholder(
            tf.float32, [1, self.dim_imgft], name='Input_Features')
        image_emb = tf.matmul(image_features, self.image_embedding[
                              'weights']) + self.image_embedding['biases']
        init_c = tf.zeros([1, self.lstm_cell.state_size[0]])
        init_h = tf.zeros([1, self.lstm_cell.state_size[1]])
        initial_state = (init_c, init_h)
        IDs = []
        with tf.variable_scope("LSTM"):
            output, state = self.lstm_cell(image_emb, initial_state)
            pred_ID = tf.nn.embedding_lookup(
                self.word_embedding['weights'], [
                    self.wtoidx["<S>"]]) + self.word_embedding['biases']
            for i in range(self.num_timesteps):
                tf.get_variable_scope().reuse_variables()
                output, state = self.lstm_cell(pred_ID, state)
                logits = tf.matmul(output, self.target_word[
                                   "weights"]) + self.target_word["biases"]
                predicted_next_idx = tf.argmax(logits, axis=1)
                pred_ID = tf.nn.embedding_lookup(
                    self.word_embedding['weights'], predicted_next_idx)
                pred_ID = pred_ID + self.word_embedding['biases']
                predicted_next_idx = tf.cast(predicted_next_idx, tf.int32, name="word_"+str(i))
                IDs.append(predicted_next_idx)

        with open("model/Decoder/DecoderOutputs.txt", 'w') as f:
            for name in IDs:
                f.write(name.name.split(":0")[0] + "\n")

        return image_features, IDs
开发者ID:suryawanshishantanu6,项目名称:image-caption-generator,代码行数:31,代码来源:caption_generator.py

示例12: generator

  def generator(self, gen_x_dim = 30, gen_y_dim = 30, reuse = False):

    if reuse:
        tf.get_variable_scope().reuse_variables()

    n_network = self.net_size_g
    gen_n_points = gen_x_dim * gen_y_dim

    z_scaled = tf.reshape(self.z, [self.batch_size, 1, self.z_dim]) * \
                    tf.ones([gen_n_points, 1], dtype=tf.float32) * self.scale
    z_unroll = tf.reshape(z_scaled, [self.batch_size*gen_n_points, self.z_dim])
    x_unroll = tf.reshape(self.x, [self.batch_size*gen_n_points, 1])
    y_unroll = tf.reshape(self.y, [self.batch_size*gen_n_points, 1])
    r_unroll = tf.reshape(self.r, [self.batch_size*gen_n_points, 1])

    U = fully_connected(z_unroll, n_network, self.model_name+'_g_0_z') + \
        fully_connected(x_unroll, n_network, self.model_name+'_g_0_x', with_bias = False) + \
        fully_connected(y_unroll, n_network, self.model_name+'_g_0_y', with_bias = False) + \
        fully_connected(r_unroll, n_network, self.model_name+'_g_0_r', with_bias = False)

    H = tf.nn.relu(U)

    for i in range(1, self.net_depth_g):
      H = tf.nn.tanh(fully_connected(H, n_network, self.model_name+'_g_tanh_'+str(i)))
      H = tf.nn.relu(fully_connected(H, n_network, self.model_name+'_g_relu_'+str(i)))

    output = tf.nn.sigmoid(fully_connected(H, self.c_dim, self.model_name+'_g_'+str(self.net_depth_g)))

    result = tf.reshape(output, [self.batch_size, gen_y_dim, gen_x_dim, self.c_dim])

    return result
开发者ID:hardmaru,项目名称:cppn-gan-vae-cifar-tensorflow,代码行数:31,代码来源:model.py

示例13: sampler

    def sampler(self,images, y=None):
        tf.get_variable_scope().reuse_variables()

        if not self.y_dim:
            
            h1 = conv2d(images,self.gf_dim*2,d_h=1,d_w=1, name='g_h1')
            h1 = tf.nn.relu(self.g_bn1(h1,train=False))
            
            h2 = conv2d(h1,self.gf_dim*4,d_h=1,d_w=1, name='g_h2')
            h2 = tf.nn.relu(self.g_bn2(h2,train=False))
           
            h3 = conv2d(h2,self.gf_dim*4,d_h=1,d_w=1, name='g_h3')
            h3 = tf.nn.relu(self.g_bn3(h3,train=False))
            
            h4 = conv2d(h3,self.gf_dim*2,d_h=1,d_w=1, name='g_h4')
            h4 = tf.nn.relu(self.g_bn4(h4,train=False))


            h5 = conv2d(h4,3, d_h=1,d_w=1, name='g_h5')
            return tf.nn.tanh(h5)
        else:
            yb = tf.reshape(y, [None, 1, 1, self.y_dim])
            z = tf.concat(1, [z, y])

            h0 = tf.nn.relu(self.bn0(linear(z, self.gfc_dim, 'g_h0_lin')))
            h0 = tf.concat(1, [h0, y])

            h1 = tf.nn.relu(self.g_bn1(linear(z, self.gf_dim*2*7*7, 'g_h1_lin')))
            h1 = tf.reshape(h1, [None, 7, 7, self.gf_dim * 2])
            h1 = conv_cond_concat(h1, yb)

            h2 = tf.nn.relu(self.bn2(deconv2d(h1, self.gf_dim, name='g_h2')))
            h2 = conv_cond_concat(h2, yb)

            return tf.nn.sigmoid(deconv2d(h2, self.c_dim, name='g_h3'))
开发者ID:jeromeyoon,项目名称:GAN_IR,代码行数:35,代码来源:test.py

示例14: _build_graph

    def _build_graph(self, inputs, is_training):
        state, action, reward, next_state, isOver = inputs
        self.predict_value = self._get_DQN_prediction(state, is_training)
        action_onehot = tf.one_hot(action, NUM_ACTIONS, 1.0, 0.0)
        pred_action_value = tf.reduce_sum(self.predict_value * action_onehot, 1)    #N,
        max_pred_reward = tf.reduce_mean(tf.reduce_max(
            self.predict_value, 1), name='predict_reward')
        add_moving_summary(max_pred_reward)

        with tf.variable_scope('target'):
            targetQ_predict_value = self._get_DQN_prediction(next_state, False)    # NxA

        # DQN
        #best_v = tf.reduce_max(targetQ_predict_value, 1)    # N,

        # Double-DQN
        tf.get_variable_scope().reuse_variables()
        next_predict_value = self._get_DQN_prediction(next_state, is_training)
        self.greedy_choice = tf.argmax(next_predict_value, 1)   # N,
        predict_onehot = tf.one_hot(self.greedy_choice, NUM_ACTIONS, 1.0, 0.0)
        best_v = tf.reduce_sum(targetQ_predict_value * predict_onehot, 1)


        target = reward + (1.0 - tf.cast(isOver, tf.float32)) * GAMMA * tf.stop_gradient(best_v)

        sqrcost = tf.square(target - pred_action_value)
        abscost = tf.abs(target - pred_action_value)    # robust error func
        cost = tf.select(abscost < 1, sqrcost, abscost)
        summary.add_param_summary([('conv.*/W', ['histogram', 'rms']),
                                   ('fc.*/W', ['histogram', 'rms']) ])   # monitor all W
        self.cost = tf.reduce_mean(cost, name='cost')
开发者ID:superjohnior,项目名称:tensorpack,代码行数:31,代码来源:DQN.py

示例15: build_decoder_rnn

    def build_decoder_rnn(self, first_step):
        """
        This function build a decoder
        if first_step is true, the state is initialized by mean context
        if first_step is not true, the states are placeholder, and should be assigned.
        """
        with tf.variable_scope("rnnlm"):
            flattened_ctx = tf.reshape(self.context, [self.batch_size, 196, 512])
            ctx_mean = tf.reduce_mean(flattened_ctx, 1)

            self.decoder_prev_word = tf.placeholder(tf.int32, [None])            
            if first_step:
                rnn_input = tf.nn.embedding_lookup(self.Wemb, tf.zeros([self.batch_size], tf.int32))
            else:
                rnn_input = tf.nn.embedding_lookup(self.Wemb, self.decoder_prev_word)

            tf.get_variable_scope().reuse_variables()
            if not first_step:
                initial_state = utils.get_placeholder_state(self.cell.state_size)
                self.decoder_flattened_state = utils.flatten_state(initial_state)
            else:
                initial_state = utils.get_initial_state(ctx_mean, self.cell.state_size)

            outputs, state = tf.contrib.legacy_seq2seq.attention_decoder([rnn_input], initial_state, flattened_ctx, self.cell, initial_state_attention = not first_step)
            logits = slim.fully_connected(outputs[0], self.vocab_size + 1, activation_fn = None, scope = 'logit')
            decoder_probs = tf.reshape(tf.nn.softmax(logits), [self.batch_size, self.vocab_size + 1])
            decoder_state = utils.flatten_state(state)

        # output the probability and flattened state to next time step
        return [decoder_probs, decoder_state]
开发者ID:ruotianluo,项目名称:neuraltalk2-tensorflow,代码行数:30,代码来源:AttentionModel.py


注:本文中的tensorflow.get_variable_scope函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。