本文整理汇总了Python中tensorflow.convert_to_tensor函数的典型用法代码示例。如果您正苦于以下问题:Python convert_to_tensor函数的具体用法?Python convert_to_tensor怎么用?Python convert_to_tensor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了convert_to_tensor函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward_prop_nodes
def forward_prop_nodes(i_start, size, acts, offset):
# Note: In the corpus that we've seen, parse trees are always ordered such that
# iteration forward through the list will be in bottom-up order.
# Conversely, iteration in reverse is always top-down.
# This enables a simple iterative algorithm. If this were not the case,
# putting the nodes in order by a postorder traversal would fix it.
def fwd_continue(*parms):
(_, sz, cur, _) = parms
return tf.less(cur, sz, name='cur_le_size')
def forward_prop(*parms):
(i0, sz, cur, act) = parms
with tf.device('/gpu:0'):
gact = act
gcur = cur
next_idx = i0 + gcur
node_out = tf.reshape(forward_node(next_idx, act, offset), [1, FLAGS.wvs, 1], name='node_out')
tf.scatter_add(gact, tf.pack([gcur]), node_out, name='act_update')
act = gact
return [i0, sz, cur + iONE, act]
with tf.device('/cpu:0'):
i_start = tf.convert_to_tensor(i_start, dtype=tf.int32, name='i_start')
size = tf.convert_to_tensor(size, dtype=tf.int32, name='size')
iZ = tf.convert_to_tensor(0, dtype=tf.int32, name='ZERO')
while_parms = [i_start, size, iZ, acts]
wresult = tf.while_loop(fwd_continue, forward_prop, while_parms, parallel_iterations=1,
name='forward_prop_while')
(_, _, _, result) = wresult
return tf.slice(result, [0, 0, 0], tf.pack([size, -1, -1]), name='fwd_prop_nodes')
示例2: testLSTMBasicToBlockPeeping
def testLSTMBasicToBlockPeeping(self):
with self.test_session(use_gpu=self._use_gpu) as sess:
batch_size = 2
input_size = 3
cell_size = 4
sequence_length = 5
inputs = []
for _ in range(sequence_length):
inp = tf.convert_to_tensor(
np.random.randn(batch_size, input_size),
dtype=tf.float32)
inputs.append(inp)
initializer = tf.random_uniform_initializer(-0.01, 0.01, seed=19890212)
with tf.variable_scope("basic", initializer=initializer):
cell = tf.nn.rnn_cell.LSTMCell(cell_size,
use_peepholes=True,
state_is_tuple=True)
outputs, _ = tf.nn.rnn(cell, inputs, dtype=tf.float32)
sess.run([tf.initialize_all_variables()])
basic_outputs = sess.run(outputs)
basic_grads = sess.run(tf.gradients(outputs, inputs))
basic_wgrads = sess.run(tf.gradients(outputs, tf.trainable_variables()))
with tf.variable_scope("block", initializer=initializer):
w = tf.get_variable("w",
shape=[input_size + cell_size, cell_size * 4],
dtype=tf.float32)
b = tf.get_variable("b",
shape=[cell_size * 4],
dtype=tf.float32,
initializer=tf.zeros_initializer)
wci = tf.get_variable("wci", shape=[cell_size], dtype=tf.float32)
wcf = tf.get_variable("wcf", shape=[cell_size], dtype=tf.float32)
wco = tf.get_variable("wco", shape=[cell_size], dtype=tf.float32)
_, _, _, _, _, _, outputs = fused_lstm(
tf.convert_to_tensor(sequence_length,
dtype=tf.int64),
inputs,
w,
b,
wci=wci,
wcf=wcf,
wco=wco,
cell_clip=0,
use_peephole=True)
sess.run([tf.initialize_all_variables()])
block_outputs = sess.run(outputs)
block_grads = sess.run(tf.gradients(outputs, inputs))
block_wgrads = sess.run(tf.gradients(outputs, [w, b, wci, wcf, wco]))
self.assertAllClose(basic_outputs, block_outputs)
self.assertAllClose(basic_grads, block_grads)
for basic, block in zip(basic_wgrads, block_wgrads):
self.assertAllClose(basic, block, rtol=1e-2, atol=1e-2)
示例3: one_minus_pseudo_unitcell_transfer_op
def one_minus_pseudo_unitcell_transfer_op(direction, mps, left_dominant,
right_dominant, vector):
"""
calculates action of 11-Transfer-Operator +|r)(l|
Parameters:
---------------------------
direction: int or str
if (1,'l','left'): do left multiplication
if (-1,'r','right'): do right multiplication
mps: InfiniteMPSCentralGauge object
an infinite mps
left_dominant: tf.tensor of shape (mps.D[0],mps.D[0])
left dominant eigenvector of the unit-cell transfer operator of mps
right_dominant: tf.tensor of shape (mps.D[-1],mps.D[-1])
right dominant eigenvector of the unit-cell transfer operator of mps
vector: tf.tensor of shape (mps.D[0]*mps.D[0]) or (mps.D[-1]*mps.D[-1])
the input vector
Returns
---------------------------
np.ndarray of shape (mps.D[0]*mps.D[0]) or (mps.D[-1]*mps.D[-1])
"""
if direction in (1, 'l', 'left'):
x = tf.reshape(tf.convert_to_tensor(vector), (mps.D[0], mps.D[0]))
temp = x - mps.unitcell_transfer_op('left', x) + ncon(
[x, right_dominant], [[1, 2], [1, 2]]) * left_dominant
return tf.reshape(temp, [mps.D[-1] * mps.D[-1]]).numpy()
if direction in (-1, 'r', 'right'):
x = tf.reshape(tf.convert_to_tensor(vector), [mps.D[-1], mps.D[-1]])
temp = x - mps.unitcell_transfer_op('right', x) + ncon(
[left_dominant, x], [[1, 2], [1, 2]]) * right_dominant
return tf.reshape(temp, [mps.D[0] * mps.D[0]]).numpy()
示例4: testOneOpCond
def testOneOpCond(self):
with self.test_session():
v = tf.Variable(0)
c = tf.convert_to_tensor(0)
one = tf.convert_to_tensor(1)
two = tf.convert_to_tensor(2)
p = tf.greater_equal(c, 1)
def a():
return tf.assign(v, one)
def b():
return tf.assign(v, two)
i = tf.cond(p, a, b)
self.assertTrue(isinstance(i, tf.Tensor))
tf.initialize_all_variables().run()
self.assertEqual(0, v.eval())
# True case: c = 2 is >= 1, v is set to 1.
self.assertEqual(1, i.eval(feed_dict={c.name: 2}))
self.assertEqual(1, v.eval())
# False case: c = 0 is not >= 1, v is set to 2.
self.assertEqual(2, i.eval(feed_dict={c.name: 0}))
self.assertEqual(2, v.eval())
示例5: _prepare_args_with_initial_simplex
def _prepare_args_with_initial_simplex(objective_function,
initial_simplex,
objective_at_initial_simplex,
batch_evaluate_objective):
"""Evaluates the objective function at the specified initial simplex."""
initial_simplex = tf.convert_to_tensor(initial_simplex)
# If d is the dimension of the problem, the number of vertices in the
# simplex should be d+1. From this, we can infer the number of dimensions
# as n - 1 where n is the number of vertices specified.
num_vertices = tf.shape(initial_simplex)[0]
dim = num_vertices - 1
num_evaluations = 0
if objective_at_initial_simplex is None:
objective_at_initial_simplex, n_evals = _evaluate_objective_multiple(
objective_function, initial_simplex, batch_evaluate_objective)
num_evaluations += n_evals
objective_at_initial_simplex = tf.convert_to_tensor(
objective_at_initial_simplex)
return (dim,
num_vertices,
initial_simplex,
objective_at_initial_simplex,
num_evaluations)
示例6: test_CE_loss
def test_CE_loss(sess, CE_arrays):
y, y_hat = CE_arrays
y = tf.convert_to_tensor(y, dtype=tf.float64)
y_hat = tf.convert_to_tensor(y_hat, dtype=tf.float64)
sess.run(cross_entropy_loss(y,y_hat))
assert 1
print("CE_loss ran to completion")
示例7: testSumGradArgs
def testSumGradArgs(self):
with self.test_session(use_gpu=False):
indices = [tf.convert_to_tensor([0, 1, 2, 3]),
tf.convert_to_tensor([2, 3])]
values = [tf.convert_to_tensor([2, 3, 5, 7]), tf.convert_to_tensor([1, 1])]
self.assertAllEqual(
tf.dynamic_stitch(indices, values).eval(), [2, 3, 1, 1])
示例8: file_to_dataset
def file_to_dataset(filepath, N, vectorizer):
#convert file to dataset, returns X and Y tensors of integer indexes describing the N words (X) leading up to (Y)
f = open(filepath)
lines = f.readlines()
X = []
Y = []
line_index = 0
for line in lines:
if line_index % 1000 == 0:
print(str(line_index) +'/' len(lines) + ' lines read...')
line_index +=1
words = line.split()
padding = (N-1)*['<pre>']
#remove /n at the end, add padding to front
words = padding + words[:-1]
for i in range(0, len(words) - N):
x = []
y = vectorizer.transform(words[i+N]).toarray()
x_words = words[i:i+N]
for word in x_words:
x.append(vectorizer.transform(word).toarray())
X.append(x)
Y.append(y)
return tf.convert_to_tensor(X), tf.convert_to_tensor(Y)
示例9: _compare
def _compare(self, func, x, y, dtype):
with self.test_session(use_gpu=False):
out = func(
tf.convert_to_tensor(np.array([x]).astype(dtype)), tf.convert_to_tensor(np.array([y]).astype(dtype))
)
ret = out.eval()
return ret[0]
示例10: log_prob
def log_prob(self, xs, zs):
"""
Parameters
----------
xs : dict of str to tf.Tensor
Data dictionary. Each key is a data structure used in the
model (Theano shared variable), and its value is the
corresponding realization (tf.Tensor).
zs : dict of str to tf.Tensor
Latent variable dictionary. Each key names a latent variable
used in the model (str), and its value is the corresponding
realization (tf.Tensor).
Returns
-------
tf.Tensor
Scalar, the log joint density log p(xs, zs).
Notes
-----
It wraps around a Python function. The Python function takes
inputs of type np.ndarray and outputs a np.ndarray.
"""
# Store keys so that ``_py_log_prob_args`` knows how each
# value corresponds to a key.
self.xs_keys = list(six.iterkeys(xs))
self.zs_keys = list(six.iterkeys(zs))
# Pass in all tensors as a flattened list for tf.py_func().
inputs = [tf.convert_to_tensor(x) for x in six.itervalues(xs)]
inputs += [tf.convert_to_tensor(z) for z in six.itervalues(zs)]
return tf.py_func(self._py_log_prob_args, inputs, [tf.float32])[0]
示例11: __init__
def __init__(self, data_dir, data_list, input_size,
random_scale, random_mirror, ignore_label, img_mean, coord):
'''Initialise an ImageReader.
Args:
data_dir: path to the directory with images and masks.
data_list: path to the file with lines of the form '/path/to/image /path/to/mask'.
input_size: a tuple with (height, width) values, to which all the images will be resized.
random_scale: whether to randomly scale the images prior to random crop.
random_mirror: whether to randomly mirror the images prior to random crop.
ignore_label: index of label to ignore during the training.
img_mean: vector of mean colour values.
coord: TensorFlow queue coordinator.
'''
self.data_dir = data_dir
self.data_list = data_list
self.input_size = input_size
self.coord = coord
self.image_list, self.label_list = read_labeled_image_list(self.data_dir, self.data_list)
self.images = tf.convert_to_tensor(self.image_list, dtype=tf.string)
self.labels = tf.convert_to_tensor(self.label_list, dtype=tf.string)
self.queue = tf.train.slice_input_producer([self.images, self.labels],
shuffle=input_size is not None) # not shuffling if it is val
self.image, self.label = read_images_from_disk(self.queue, self.input_size, random_scale, random_mirror, ignore_label, img_mean)
示例12: testPlaceholder
def testPlaceholder(self):
with self.test_session(use_gpu=True):
# Test using placeholder with a defined shape.
ph_0 = tf.placeholder(tf.int32, shape=[])
result_0 = tf.convert_to_tensor([[0, 0, 0],
[0, ph_0, 0],
[0, 0, 0]])
self.assertAllEqual([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]],
result_0.eval(feed_dict={ph_0: 1}))
self.assertAllEqual([[0, 0, 0],
[0, 2, 0],
[0, 0, 0]],
result_0.eval(feed_dict={ph_0: 2}))
# Test using placeholder with an undefined shape.
ph_1 = tf.placeholder(tf.int32)
result_1 = tf.convert_to_tensor([[0, 0, 0],
[0, ph_1, 0],
[0, 0, 0]])
self.assertAllEqual([[0, 0, 0], [0, 1, 0], [0, 0, 0]],
result_1.eval(feed_dict={ph_1: 1}))
self.assertAllEqual([[0, 0, 0], [0, 2, 0], [0, 0, 0]],
result_1.eval(feed_dict={ph_1: 2}))
示例13: test_regression_metrics
def test_regression_metrics(self):
with self.test_session():
y_a = tf.convert_to_tensor(np.random.random((6, 7)))
y_b = tf.convert_to_tensor(np.random.random((6, 7)))
for metric in all_regression_metrics:
output = metric(y_a, y_b)
assert output.eval().shape == ()
示例14: testLoop_1
def testLoop_1(self):
with self.test_session():
zero = tf.convert_to_tensor(0)
one = tf.convert_to_tensor(1)
n = tf.constant(10)
enter_zero = control_flow_ops.enter(zero, "foo_1", False)
enter_one = control_flow_ops.enter(one, "foo_1", False)
enter_n = control_flow_ops.enter(n, "foo_1", False)
merge_zero = control_flow_ops.merge([enter_zero, enter_zero], name="merge_zero")[0]
merge_one = control_flow_ops.merge([enter_one, enter_one], name="merge_one")[0]
merge_n = control_flow_ops.merge([enter_n, enter_n], name="merge_n")[0]
less_op = tf.less(merge_n, merge_n)
cond_op = control_flow_ops.loop_cond(less_op)
switch_zero = control_flow_ops.switch(merge_zero, cond_op)
switch_one = control_flow_ops.switch(merge_one, cond_op)
switch_n = control_flow_ops.switch(merge_n, cond_op)
next_zero = control_flow_ops.next_iteration(switch_zero[1])
next_one = control_flow_ops.next_iteration(switch_one[1])
next_n = control_flow_ops.next_iteration(switch_n[1])
merge_zero.op._update_input(1, next_zero)
merge_one.op._update_input(1, next_one)
merge_n.op._update_input(1, next_n)
exit_n = control_flow_ops.exit(switch_n[0])
result = exit_n.eval()
self.assertAllEqual(10, result)
示例15: batched_index
def batched_index(values, indices):
"""Equivalent to `values[:, indices]`.
Performs indexing on batches and sequence-batches by reducing over
zero-masked values. Compared to indexing with `tf.gather` this approach is
more general and TPU-friendly, but may be less efficient if `num_values`
is large. It works with tensors whose shapes are unspecified or
partially-specified, but this op will only do shape checking on shape
information available at graph construction time. When complete shape
information is absent, certain shape incompatibilities may not be detected at
runtime! See `indexing_ops_test` for detailed examples.
Args:
values: tensor of shape `[B, num_values]` or `[T, B, num_values]`
indices: tensor of shape `[B]` or `[T, B]` containing indices.
Returns:
Tensor of shape `[B]` or `[T, B]` containing values for the given indices.
Raises: ValueError if values and indices have sizes that are known
statically (i.e. during graph construction), and those sizes are not
compatible (see shape descriptions in Args list above).
"""
with tf.name_scope("batch_indexing", values=[values, indices]):
values = tf.convert_to_tensor(values)
indices = tf.convert_to_tensor(indices)
assert_compatible_shapes(values.shape, indices.shape)
one_hot_indices = tf.one_hot(
indices, tf.shape(values)[-1], dtype=values.dtype)
return tf.reduce_sum(values * one_hot_indices, axis=-1)