本文整理汇总了Python中tensorflow.constant函数的典型用法代码示例。如果您正苦于以下问题:Python constant函数的具体用法?Python constant怎么用?Python constant使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了constant函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testHigherRank
def testHigherRank(self):
np.random.seed(1)
# We check that scalar and empty shapes work as well
for shape in (7, 0), (4, 3, 2):
for indices_shape in (), (0,), (3, 0), (3, 5):
params = np.random.randn(*shape)
indices = np.random.randint(shape[0], size=indices_shape)
with self.test_session(use_gpu=self.use_gpu):
tf_params = tf.constant(params)
tf_indices = tf.constant(indices)
gather = tf.gather(tf_params, tf_indices)
self.assertAllEqual(params[indices], gather.eval())
self.assertEqual(indices.shape + params.shape[1:], gather.get_shape())
# Test gradients
gather_grad = np.random.randn(*gather.get_shape().as_list())
params_grad, indices_grad = tf.gradients(
gather, [tf_params, tf_indices], gather_grad)
self.assertEqual(indices_grad, None)
self.assertEqual(type(params_grad), tf.IndexedSlices)
params_grad = tf.convert_to_tensor(params_grad)
correct_params_grad = np.zeros(shape)
for i, g in zip(indices.flat,
gather_grad.reshape((indices.size,) + shape[1:])):
correct_params_grad[i] += g
self.assertAllClose(correct_params_grad, params_grad.eval())
示例2: testMutableHashTableExportInsert
def testMutableHashTableExportInsert(self):
with self.test_session():
default_val = tf.constant([-1, -1], tf.int64)
keys = tf.constant(["brain", "salad", "surgery"])
values = tf.constant([[0, 1], [2, 3], [4, 5]], tf.int64)
table1 = tf.contrib.lookup.MutableHashTable(tf.string, tf.int64,
default_val)
self.assertAllEqual(0, table1.size().eval())
table1.insert(keys, values).run()
self.assertAllEqual(3, table1.size().eval())
input_string = tf.constant(["brain", "salad", "tank"])
expected_output = [[0, 1], [2, 3], [-1, -1]]
output1 = table1.lookup(input_string)
self.assertAllEqual(expected_output, output1.eval())
exported_keys, exported_values = table1.export()
self.assertAllEqual(3, exported_keys.eval().size)
self.assertAllEqual(6, exported_values.eval().size)
# Populate a second table from the exported data
table2 = tf.contrib.lookup.MutableHashTable(tf.string, tf.int64,
default_val)
self.assertAllEqual(0, table2.size().eval())
table2.insert(exported_keys, exported_values).run()
self.assertAllEqual(3, table2.size().eval())
# Verify lookup result is still the same
output2 = table2.lookup(input_string)
self.assertAllEqual(expected_output, output2.eval())
示例3: testSignatureMismatch
def testSignatureMismatch(self):
with self.test_session():
default_val = -1
keys = tf.constant(["brain", "salad", "surgery"])
values = tf.constant([0, 1, 2], tf.int64)
table = tf.contrib.lookup.MutableHashTable(tf.string,
tf.int64,
default_val)
# insert with keys of the wrong type
with self.assertRaises(TypeError):
table.insert(tf.constant([4, 5, 6]), values).run()
# insert with values of the wrong type
with self.assertRaises(TypeError):
table.insert(keys, tf.constant(["a", "b", "c"])).run()
self.assertAllEqual(0, table.size().eval())
table.insert(keys, values).run()
self.assertAllEqual(3, table.size().eval())
# lookup with keys of the wrong type
input_string = tf.constant([1, 2, 3], tf.int64)
with self.assertRaises(TypeError):
table.lookup(input_string).eval()
# default value of the wrong type
with self.assertRaises(TypeError):
tf.contrib.lookup.MutableHashTable(tf.string, tf.int64, "UNK")
示例4: testTensorArrayGradientWritePackConcatAndRead
def testTensorArrayGradientWritePackConcatAndRead(self):
with self.test_session(use_gpu=self._use_gpu) as sess:
ta = tensor_array_ops.TensorArray(
dtype=tf.float32, tensor_array_name="foo", size=2,
clear_after_read=False)
value_0 = tf.constant([-1.0, 1.0])
value_1 = tf.constant([-10.0, 10.0])
w0 = ta.write(0, value_0)
w1 = w0.write(1, value_1)
p0 = w1.pack()
r0 = w1.read(0)
s0 = w1.concat()
# Test gradient accumulation between read(0), pack(), and concat()
with tf.control_dependencies([p0, r0, s0]):
grad_r = tf.gradients(
ys=[p0, r0, s0], xs=[value_0, value_1],
grad_ys=[
[[2.0, 3.0], [4.0, 5.0]], # pack gradient
[-0.5, 1.5], # read(0) gradient
[20.0, 30.0, 40.0, 50.0]]) # concat gradient
grad_vals = sess.run(grad_r) # 2 + 2 entries
self.assertAllClose([2.0 - 0.5 + 20.0, 3.0 + 1.5 + 30.0], grad_vals[0])
self.assertAllEqual([4.0 + 40.0, 5.0 + 50.0], grad_vals[1])
示例5: resize_images
def resize_images(X, height_factor, width_factor, dim_ordering):
'''Resizes the images contained in a 4D tensor of shape
- [batch, channels, height, width] (for 'th' dim_ordering)
- [batch, height, width, channels] (for 'tf' dim_ordering)
by a factor of (height_factor, width_factor). Both factors should be
positive integers.
'''
if dim_ordering == 'th':
original_shape = int_shape(X)
new_shape = tf.shape(X)[2:]
new_shape *= tf.constant(np.array([height_factor, width_factor]).astype('int32'))
X = permute_dimensions(X, [0, 2, 3, 1])
X = tf.image.resize_nearest_neighbor(X, new_shape)
X = permute_dimensions(X, [0, 3, 1, 2])
X.set_shape((None, None, original_shape[2] * height_factor, original_shape[3] * width_factor))
return X
elif dim_ordering == 'tf':
original_shape = int_shape(X)
new_shape = tf.shape(X)[1:3]
new_shape *= tf.constant(np.array([height_factor, width_factor]).astype('int32'))
X = tf.image.resize_nearest_neighbor(X, new_shape)
X.set_shape((None, original_shape[1] * height_factor, original_shape[2] * width_factor, None))
return X
else:
raise Exception('Invalid dim_ordering: ' + dim_ordering)
示例6: prepareGraph
def prepareGraph(self):
logging.debug("prepareGraph")
# image_size = self.image_size
# num_labels = self.num_labels
graph = tf.Graph()
self.graph = graph
with graph.as_default():
# Input data.
# Load the training, validation and test data into constants that are
# attached to the graph.
self.getInputData()
# tf_train_dataset, tf_train_labels = self.getInputData()
tf_valid_dataset = tf.constant(self.valid_dataset)
tf_test_dataset = tf.constant(self.test_dataset)
self.setupVariables()
self.setupLossFunction()
# Optimizer.
# We are going to find the minimum of this loss using gradient descent.
self.setupOptimizer()
# Predictions for the training, validation, and test data.
# These are not part of training, but merely here so that we can report
# accuracy figures as we train.
train_prediction = tf.nn.softmax(self.getTempModleOutput_forTest(self.tf_train_dataset))
valid_prediction = tf.nn.softmax(self.getTempModleOutput_forTest(tf_valid_dataset))
test_prediction = tf.nn.softmax(self.getTempModleOutput_forTest(tf_test_dataset))
self.train_prediction = train_prediction
self.valid_prediction= valid_prediction
self.test_prediction = test_prediction
return
示例7: build_greedy_training
def build_greedy_training(self, state, network_states):
"""Extracts features and advances a batch using the oracle path.
Args:
state: MasterState from the 'AdvanceMaster' op that advances the
underlying master to this component.
network_states: dictionary of component NetworkState objects
Returns:
state handle: final state after advancing
cost: regularization cost, possibly associated with embedding matrices
correct: since no gold path is available, 0.
total: since no gold path is available, 0.
"""
logging.info('Building component: %s', self.spec.name)
stride = state.current_batch_size * self.training_beam_size
with tf.variable_scope(self.name, reuse=True):
state.handle, fixed_embeddings = fetch_differentiable_fixed_embeddings(
self, state, stride)
linked_embeddings = [
fetch_linked_embedding(self, network_states, spec)
for spec in self.spec.linked_feature
]
with tf.variable_scope(self.name, reuse=True):
tensors = self.network.create(
fixed_embeddings, linked_embeddings, None, None, True, stride=stride)
update_network_states(self, tensors, network_states, stride)
cost = self.add_regularizer(tf.constant(0.))
correct, total = tf.constant(0), tf.constant(0)
return state.handle, cost, correct, total
示例8: net
def net(file_name, x, pooling_function='MAX'):
mat_dict = scipy.io.loadmat(file_name)
img_mean = mat_dict['meta'][0][0][1][0][0][0][0][0]
layers = mat_dict['layers'][0]
vgg = x
content_activations = {}
relu_num = 1
pool_num = 1
for layer_data in layers:
layer = layer_data[0][0]
layer_type = layer[1][0]
if layer_type == 'conv':
weights, biases, *rest = layer[2][0]
# permute `weights` elements for input to TensorFlow
weights = np.transpose(weights, (1, 0, 2, 3))
W_conv = tf.constant(weights)
# convert `biases` shape from [n,1] to [n]
biases = biases.reshape(-1)
b_conv = tf.constant(biases)
vgg = conv2d(vgg, W_conv, 1) + b_conv
elif layer_type == 'relu':
vgg = tf.nn.relu(vgg)
content_activations["relu"+str(pool_num)+"_"+str(relu_num)] = vgg
relu_num += 1
elif layer_type == 'pool':
if pooling_function == 'AVG':
vgg = avg_pool(vgg, 2)
else:
vgg = max_pool(vgg, 2)
pool_num += 1
relu_num = 1
return vgg, content_activations, img_mean
示例9: encode_coordinates_alt
def encode_coordinates_alt(self, net):
"""An alternative implemenation for the encoding coordinates.
Args:
net: a tensor of shape=[batch_size, height, width, num_features]
Returns:
a list of tensors with encoded image coordinates in them.
"""
batch_size, h, w, _ = net.shape.as_list()
h_loc = [
tf.tile(
tf.reshape(
tf.contrib.layers.one_hot_encoding(
tf.constant([i]), num_classes=h), [h, 1]), [1, w])
for i in xrange(h)
]
h_loc = tf.concat([tf.expand_dims(t, 2) for t in h_loc], 2)
w_loc = [
tf.tile(
tf.contrib.layers.one_hot_encoding(tf.constant([i]), num_classes=w),
[h, 1]) for i in xrange(w)
]
w_loc = tf.concat([tf.expand_dims(t, 2) for t in w_loc], 2)
loc = tf.concat([h_loc, w_loc], 2)
loc = tf.tile(tf.expand_dims(loc, 0), [batch_size, 1, 1, 1])
return tf.concat([net, loc], 3)
示例10: testShapeWrong
def testShapeWrong(self):
with tf.Graph().as_default():
with self.assertRaisesWithPredicateMatch(
ValueError,
lambda e: ("Too many elements provided. Needed at most 5, "
"but received 7" == str(e))):
tf.constant([1, 2, 3, 4, 5, 6, 7], shape=[5])
示例11: boston_input_fn
def boston_input_fn():
boston = tf.contrib.learn.datasets.load_boston()
features = tf.cast(
tf.reshape(tf.constant(boston.data), [-1, 13]), tf.float32)
labels = tf.cast(
tf.reshape(tf.constant(boston.target), [-1, 1]), tf.float32)
return features, labels
示例12: test_draw_bounding_boxes_on_image_tensors
def test_draw_bounding_boxes_on_image_tensors(self):
"""Tests that bounding box utility produces reasonable results."""
category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
image_np = np.array(Image.open(fname))
images_np = np.stack((image_np, image_np), axis=0)
with tf.Graph().as_default():
images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
[[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
images_with_boxes = (
visualization_utils.draw_bounding_boxes_on_image_tensors(
images_tensor,
boxes,
classes,
scores,
category_index,
min_score_thresh=0.2))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
# Write output images for visualization.
images_with_boxes_np = sess.run(images_with_boxes)
self.assertEqual(images_np.shape, images_with_boxes_np.shape)
for i in range(images_with_boxes_np.shape[0]):
img_name = 'image_' + str(i) + '.png'
output_file = os.path.join(self.get_temp_dir(), img_name)
logging.info('Writing output image %d to %s', i, output_file)
image_pil = Image.fromarray(images_with_boxes_np[i, ...])
image_pil.save(output_file)
示例13: convert_data_to_tensors
def convert_data_to_tensors(x, y):
inputs = tf.constant(x)
inputs.set_shape([None, 1])
outputs = tf.constant(y)
outputs.set_shape([None, 1])
return inputs, outputs
示例14: bn_variables
def bn_variables(self, size, name):
weights = OrderedDict()
weights[name+'_mean'] = tf.Variable(tf.constant(0.0, shape=size))
weights[name +'_variance'] = tf.Variable(tf.constant(1.0, shape=size))
weights[name + '_offset'] = tf.Variable(tf.constant(0.0, shape=size))
weights[name + '_scale'] = tf.Variable(tf.constant(1.0, shape=size))
return weights
示例15: custom_layer
def custom_layer(input_matrix):
input_matrix_sqeezed = tf.squeeze(input_matrix)
A = tf.constant([[1., 2.], [-1., 3.]])
b = tf.constant(1., shape=[2, 2])
temp1 = tf.matmul(A, input_matrix_sqeezed)
temp = tf.add(temp1, b) # Ax + b
return(tf.sigmoid(temp))