当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.ceil函数代码示例

本文整理汇总了Python中tensorflow.ceil函数的典型用法代码示例。如果您正苦于以下问题:Python ceil函数的具体用法?Python ceil怎么用?Python ceil使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了ceil函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_forward_ceil

def test_forward_ceil():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.ceil(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Ceil:0')
开发者ID:LANHUIYING,项目名称:tvm,代码行数:7,代码来源:test_forward.py

示例2: pad_to_multiple

def pad_to_multiple(tensor, multiple):
  """Returns the tensor zero padded to the specified multiple.

  Appends 0s to the end of the first and second dimension (height and width) of
  the tensor until both dimensions are a multiple of the input argument
  'multiple'. E.g. given an input tensor of shape [1, 3, 5, 1] and an input
  multiple of 4, PadToMultiple will append 0s so that the resulting tensor will
  be of shape [1, 4, 8, 1].

  Args:
    tensor: rank 4 float32 tensor, where
            tensor -> [batch_size, height, width, channels].
    multiple: the multiple to pad to.

  Returns:
    padded_tensor: the tensor zero padded to the specified multiple.
  """
  tensor_shape = tensor.get_shape()
  batch_size = static_shape.get_batch_size(tensor_shape)
  tensor_height = static_shape.get_height(tensor_shape)
  tensor_width = static_shape.get_width(tensor_shape)
  tensor_depth = static_shape.get_depth(tensor_shape)

  if batch_size is None:
    batch_size = tf.shape(tensor)[0]

  if tensor_height is None:
    tensor_height = tf.shape(tensor)[1]
    padded_tensor_height = tf.to_int32(
        tf.ceil(tf.to_float(tensor_height) / tf.to_float(multiple))) * multiple
  else:
    padded_tensor_height = int(
        math.ceil(float(tensor_height) / multiple) * multiple)

  if tensor_width is None:
    tensor_width = tf.shape(tensor)[2]
    padded_tensor_width = tf.to_int32(
        tf.ceil(tf.to_float(tensor_width) / tf.to_float(multiple))) * multiple
  else:
    padded_tensor_width = int(
        math.ceil(float(tensor_width) / multiple) * multiple)

  if tensor_depth is None:
    tensor_depth = tf.shape(tensor)[3]

  # Use tf.concat instead of tf.pad to preserve static shape
  if padded_tensor_height != tensor_height:
    height_pad = tf.zeros([
        batch_size, padded_tensor_height - tensor_height, tensor_width,
        tensor_depth
    ])
    tensor = tf.concat([tensor, height_pad], 1)
  if padded_tensor_width != tensor_width:
    width_pad = tf.zeros([
        batch_size, padded_tensor_height, padded_tensor_width - tensor_width,
        tensor_depth
    ])
    tensor = tf.concat([tensor, width_pad], 2)

  return tensor
开发者ID:ALISCIFP,项目名称:models,代码行数:60,代码来源:ops.py

示例3: _update_lipschitz

  def _update_lipschitz(self,v,i):
    config = self.config
    if len(v.shape) > 1:
      k = self.config.weight_constraint_k or 100.0000
      wi_hat = v
      if len(v.shape) == 4:
        #fij = tf.reduce_sum(tf.abs(wi_hat),  axis=[0,1])
        fij = wi_hat
        fij = tf.reduce_sum(tf.abs(fij),  axis=[1])
        fij = tf.reduce_max(fij,  axis=[0])
      else:
        fij = wi_hat

      if self.config.ortho_pnorm == "inf":
        wp = tf.reduce_max(tf.reduce_sum(tf.abs(fij), axis=0), axis=0)
      else:
        # conv
        wp = tf.reduce_max(tf.reduce_sum(tf.abs(fij), axis=1), axis=0)
      ratio = (1.0/tf.maximum(1.0, wp/k))
      
      if self.config.weight_bounce:
        bounce = tf.minimum(1.0, tf.ceil(wp/k-0.999))
        ratio -= tf.maximum(0.0, bounce) * 0.2

      if self.config.weight_scaleup:
        up = tf.minimum(1.0, tf.ceil(0.02-wp/k))
        ratio += tf.maximum(0.0, up) * k/wp * 0.2

      wi = ratio*(wi_hat)
      #self.gan.metrics['wi'+str(i)]=wp
      #self.gan.metrics['wk'+str(i)]=ratio
      #self.gan.metrics['bouce'+str(i)]=bounce
      return tf.assign(v, wi)
    return None
开发者ID:255BITS,项目名称:hyperchamber-gan,代码行数:34,代码来源:weight_constraint_train_hook.py

示例4: _anchor_component_tf

  def _anchor_component_tf(self):
    print('Use TF anchors')
    with tf.variable_scope('ANCHOR_' + self._tag) as scope:
      # just to get the shape right
      height = tf.to_int32(tf.ceil(self._im_info[0, 0] / np.float32(self._feat_stride[0])))
      width = tf.to_int32(tf.ceil(self._im_info[0, 1] / np.float32(self._feat_stride[0])))

      self._anchors, self._anchor_length = generate_anchors_pre_tf(
        height, width, self._feat_stride[0], self._anchor_scales,
        self._anchor_ratios)
开发者ID:jacke121,项目名称:tf_rfcn,代码行数:10,代码来源:network.py

示例5: _anchor_component

 def _anchor_component(self):
   with tf.variable_scope('ANCHOR_' + self._tag) as scope:
     # just to get the shape right
     height = tf.to_int32(tf.ceil(self._im_info[0, 0] / np.float32(self._feat_stride[0])))
     width = tf.to_int32(tf.ceil(self._im_info[0, 1] / np.float32(self._feat_stride[0])))
     anchors, anchor_length = tf.py_func(generate_anchors_pre,
                                         [height, width,
                                          self._feat_stride, self._anchor_scales, self._anchor_ratios],
                                         [tf.float32, tf.int32], name="generate_anchors")
     anchors.set_shape([None, 4])
     anchor_length.set_shape([])
     self._anchors = anchors
     self._anchor_length = anchor_length
开发者ID:lz20061213,项目名称:quadrilateral,代码行数:13,代码来源:network.py

示例6: sample_img

def sample_img(img, n_samples):
    sx = tf.random_uniform((n_samples,), 0, 1) * 27
    sy = tf.random_uniform((n_samples,), 0, 1) * 27
    sx_lower = tf.cast(tf.floor(sx), tf.int32)
    sx_upper = tf.cast(tf.ceil(sx), tf.int32)

    sy_lower = tf.cast(tf.floor(sy), tf.int32)
    sy_upper = tf.cast(tf.ceil(sy), tf.int32)

    sx_nearest = tf.cast(tf.round(sx), tf.int32)
    sy_nearest = tf.cast(tf.round(sy), tf.int32)
    inds = tf.pack([sx_nearest, sy_nearest])
    samples = tf.gather(tf.reshape(img, (-1,)), sx_nearest + sy_nearest*28)
    return sx/27, sy/27, samples
开发者ID:lukemetz,项目名称:cppn,代码行数:14,代码来源:model.py

示例7: _survival_function

  def _survival_function(self, y):
    low = self._low
    high = self._high

    # Recall the promise:
    # survival_function(y) := P[Y > y]
    #                       = 0, if y >= high,
    #                       = 1, if y < low,
    #                       = P[X > y], otherwise.

    # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in
    # between.
    j = tf.ceil(y)

    # P[X > j], used when low < X < high.
    result_so_far = self.distribution.survival_function(j)

    # Broadcast, because it's possible that this is a single distribution being
    # evaluated on a number of samples, or something like that.
    j += tf.zeros_like(result_so_far)

    # Re-define values at the cutoffs.
    if low is not None:
      result_so_far = tf.where(j < low, tf.ones_like(result_so_far),
                               result_so_far)
    if high is not None:
      result_so_far = tf.where(j >= high, tf.zeros_like(result_so_far),
                               result_so_far)

    return result_so_far
开发者ID:lewisKit,项目名称:probability,代码行数:30,代码来源:quantized_distribution.py

示例8: resnet_fpn_backbone

def resnet_fpn_backbone(image, num_blocks, freeze_c2=True):
    shape2d = tf.shape(image)[2:]
    mult = float(cfg.FPN.RESOLUTION_REQUIREMENT)
    new_shape2d = tf.to_int32(tf.ceil(tf.to_float(shape2d) / mult) * mult)
    pad_shape2d = new_shape2d - shape2d
    assert len(num_blocks) == 4, num_blocks
    with resnet_argscope():
        chan = image.shape[1]
        pad_base = maybe_reverse_pad(2, 3)
        l = tf.pad(image, tf.stack(
            [[0, 0], [0, 0],
             [pad_base[0], pad_base[1] + pad_shape2d[0]],
             [pad_base[0], pad_base[1] + pad_shape2d[1]]]))
        l.set_shape([None, chan, None, None])
        l = Conv2D('conv0', l, 64, 7, strides=2, activation=BNReLU, padding='VALID')
        l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)])
        l = MaxPooling('pool0', l, 3, strides=2, padding='VALID')
        c2 = resnet_group('group0', l, resnet_bottleneck, 64, num_blocks[0], 1)
        if freeze_c2:
            c2 = tf.stop_gradient(c2)
        c3 = resnet_group('group1', c2, resnet_bottleneck, 128, num_blocks[1], 2)
        c4 = resnet_group('group2', c3, resnet_bottleneck, 256, num_blocks[2], 2)
        c5 = resnet_group('group3', c4, resnet_bottleneck, 512, num_blocks[3], 2)
    # 32x downsampling up to now
    # size of c5: ceil(input/32)
    return c2, c3, c4, c5
开发者ID:tobyma,项目名称:tensorpack,代码行数:26,代码来源:basemodel.py

示例9: crop_or_pad

def crop_or_pad(waves, length, channels):
  """Crop or pad wave to have shape [N, length, channels].

  Args:
    waves: A 3D `Tensor` of NLC format.
    length: A Python scalar. The output wave size.
    channels: Number of output waves channels.

  Returns:
    A 3D `Tensor` of NLC format with shape [N, length, channels].
  """
  waves = tf.convert_to_tensor(waves)
  batch_size = waves.shape[0].value
  waves_shape = tf.shape(waves)

  # Force audio length.
  pad = tf.maximum(0, length - waves_shape[1])
  right_pad = tf.to_int32(tf.to_float(pad) / 2.0)
  left_pad = pad - right_pad
  waves = tf.pad(waves, [[0, 0], [left_pad, right_pad], [0, 0]])
  waves = waves[:, :length, :]

  # Force number of channels.
  num_repeats = tf.to_int32(
      tf.ceil(tf.to_float(channels) / tf.to_float(waves_shape[2])))
  waves = tf.tile(waves, [1, 1, num_repeats])[:, :, :channels]

  waves.set_shape([batch_size, length, channels])
  return waves
开发者ID:cghawthorne,项目名称:magenta,代码行数:29,代码来源:spectral_ops.py

示例10: non_zero_tokens

def non_zero_tokens(tokens):
    """Receives a vector of tokens (float) which are zero-padded. Returns a vector of the same size, which has the value
    1.0 in positions with actual tokens and 0.0 in positions with zero-padding.

    :param tokens:
    :return:
    """
    return tf.ceil(tokens / tf.reduce_max(tokens, [1], keep_dims=True))
开发者ID:zhongyunuestc,项目名称:iwcs2017-answer-selection,代码行数:8,代码来源:pooling_helper.py

示例11: reshape_seqs

 def reshape_seqs(x, avg_window_size=3, **kwargs):
     B = tf.shape(x)[0]
     L = tf.cast(tf.shape(x)[1], tf.float32)
     D = x.get_shape().as_list()[-1]
     b = tf.transpose(x, [0, 2, 1])
     extra_pads = tf.cast(tf.ceil(L / avg_window_size) * avg_window_size - L, tf.int32)
     c = tf.pad(b, tf.concat([tf.zeros([2, 2], dtype=tf.int32), [[0, extra_pads]]], axis=0))
     return tf.reshape(c, [B, D, avg_window_size, -1])
开发者ID:hanxiao,项目名称:encoding-blocks,代码行数:8,代码来源:fuse_blocks.py

示例12: imageWarpIm

def imageWarpIm(imageBatch,pMtrxBatch,opt,name=None):
	with tf.name_scope("ImWarp"):
		imageBatch = tf.expand_dims(imageBatch,-1)
		batchSize = tf.shape(imageBatch)[0]
		imageH,imageW = opt.H,opt.H
		H,W = opt.H,opt.W
		warpGTmtrxBatch = tf.tile(tf.expand_dims(opt.warpGTmtrx,0),[batchSize,1,1])
		transMtrxBatch = tf.matmul(warpGTmtrxBatch,pMtrxBatch)
		# warp the canonical coordinates
		X,Y = np.meshgrid(np.linspace(-1,1,W),np.linspace(-1,1,H))
		XYhom = tf.transpose(tf.stack([X.reshape([-1]),Y.reshape([-1]),np.ones([X.size])],axis=1))
		XYhomBatch = tf.tile(tf.expand_dims(XYhom,0),[batchSize,1,1])
		XYwarpHomBatch = tf.matmul(transMtrxBatch,tf.to_float(XYhomBatch))
		XwarpHom,YwarpHom,ZwarpHom = tf.split(XYwarpHomBatch,3,1)
		Xwarp = tf.reshape(XwarpHom/ZwarpHom,[batchSize,H,W])
		Ywarp = tf.reshape(YwarpHom/ZwarpHom,[batchSize,H,W])
		# get the integer sampling coordinates
		Xfloor,Xceil = tf.floor(Xwarp),tf.ceil(Xwarp)
		Yfloor,Yceil = tf.floor(Ywarp),tf.ceil(Ywarp)
		XfloorInt,XceilInt = tf.to_int32(Xfloor),tf.to_int32(Xceil)
		YfloorInt,YceilInt = tf.to_int32(Yfloor),tf.to_int32(Yceil)
		imageIdx = tf.tile(tf.reshape(tf.range(batchSize),[batchSize,1,1]),[1,H,W])
		imageVec = tf.reshape(imageBatch,[-1,tf.shape(imageBatch)[3]])
		imageVecOutside = tf.concat([imageVec,tf.zeros([1,tf.shape(imageBatch)[3]])],0)
		idxUL = (imageIdx*imageH+YfloorInt)*imageW+XfloorInt
		idxUR = (imageIdx*imageH+YfloorInt)*imageW+XceilInt
		idxBL = (imageIdx*imageH+YceilInt)*imageW+XfloorInt
		idxBR = (imageIdx*imageH+YceilInt)*imageW+XceilInt
		idxOutside = tf.fill([batchSize,H,W],batchSize*imageH*imageW)
		def insideIm(Xint,Yint):
			return (Xint>=0)&(Xint<imageW)&(Yint>=0)&(Yint<imageH)
		idxUL = tf.where(insideIm(XfloorInt,YfloorInt),idxUL,idxOutside)
		idxUR = tf.where(insideIm(XceilInt,YfloorInt),idxUR,idxOutside)
		idxBL = tf.where(insideIm(XfloorInt,YceilInt),idxBL,idxOutside)
		idxBR = tf.where(insideIm(XceilInt,YceilInt),idxBR,idxOutside)
		# bilinear interpolation
		Xratio = tf.reshape(Xwarp-Xfloor,[batchSize,H,W,1])
		Yratio = tf.reshape(Ywarp-Yfloor,[batchSize,H,W,1])
		ImUL = tf.to_float(tf.gather(imageVecOutside,idxUL))*(1-Xratio)*(1-Yratio)
		ImUR = tf.to_float(tf.gather(imageVecOutside,idxUR))*(Xratio)*(1-Yratio)
		ImBL = tf.to_float(tf.gather(imageVecOutside,idxBL))*(1-Xratio)*(Yratio)
		ImBR = tf.to_float(tf.gather(imageVecOutside,idxBR))*(Xratio)*(Yratio)
		ImWarpBatch = ImUL+ImUR+ImBL+ImBR
		ImWarpBatch = tf.identity(ImWarpBatch,name=name)
	return ImWarpBatch
开发者ID:sunshinezhe,项目名称:IC-STN,代码行数:45,代码来源:data.py

示例13: cnn

def cnn(model, config, scope, connect = None):
	with tf.variable_scope(scope), tf.name_scope(scope):
		with tf.variable_scope('inputs'), tf.name_scope('inputs'):
			sizes = {size: config.getint(scope, '%s_size' %size) for size in ['clength', 'cstep', 'plength', 'pstep']}
			if connect is None:
				model['%s_in0length' %scope] = config.getint('global', 'batch_size')
				model['%s_in1length' %scope] = config.getint('global', 'input_size')
				model['%s_in2length' %scope] = tf.placeholder(tf.int32, [model['%s_in0length' %scope]], '%s_in2length' %scope)
				model['%s_maxin2length' %scope] = config.getint('global', 'time_size')
				model['%s_inputs' %scope] = tf.placeholder(tf.float32, [model['%s_maxin2length' %scope], model['%s_in0length' %scope], model['%s_in1length' %scope]], '%s_inputs' %scope)
			else:
				model['%s_in0length' %scope] = model['%s_out0length' %connect]
				model['%s_in1length' %scope] = model['%s_out1length' %connect]
				model['%s_in2length' %scope] = model['%s_out2length' %connect]
				model['%s_maxin2length' %scope] = model['%s_maxout2length' %connect]
				model['%s_inputs' %scope] = model['%s_outputs' %connect]
			model['%s_transform' %scope] = tf.transpose(tf.reshape(model['%s_inputs' %scope], [model['%s_maxin2length' %scope], model['%s_in0length' %scope], model['%s_in1length' %scope], 1]), [1, 0, 2, 3], '%s_transform' %scope)
			model['%s_out0length' %scope] = model['%s_in0length' %scope]
			model['%s_out1length' %scope] = model['%s_in1length' %scope]
			model['%s_out2length' %scope] = model['%s_in2length' %scope]
			model['%s_maxout2length' %scope] = model['%s_maxin2length' %scope]

		for _ in xrange(config.getint(scope, 'layer_size')):
			if _ == 0: model['%s_transform%i' %(scope, _)] = model['%s_transform' %scope]
			else: model['%s_transform%i' %(scope, _)] = model['%s_pooling%i' %(scope, _ - 1)]

			with tf.variable_scope('filter%i' %_), tf.name_scope('filter%s' %_):
				model['%s_filter%i' %(scope, _)] = tf.Variable(tf.truncated_normal([sizes['clength'], sizes['clength'], 1, 1]))
				model['%s_stride%i' %(scope, _)] = [1, sizes['cstep'], sizes['cstep'], 1]

			with tf.variable_scope('convolution%i' %_), tf.name_scope('convolution%i' %_):
				model['%s_convolution%i' %(scope, _)] = tf.nn.conv2d(model['%s_transform%i' %(scope, _)], model['%s_filter%i' %(scope, _)], model['%s_stride%i' %(scope, _)], 'VALID')
				model['%s_out1length' %scope] = int(math.ceil(float(model['%s_out1length' %scope] - sizes['clength'] + 1) / float(sizes['cstep'])))
				model['%s_out2length' %scope] = tf.to_int32(tf.ceil(tf.div(tf.to_float(tf.subtract(model['%s_out2length' %scope], sizes['clength'] - 1)), tf.to_float(sizes['cstep']))))
				model['%s_maxout2length' %scope] = int(math.ceil(float(model['%s_maxout2length' %scope] - sizes['clength'] + 1) / float(sizes['cstep'])))
				model['%s_pooling%i' %(scope, _)] = getattr(tf.nn, '%s_pool' %config.get(scope, 'pool'))(model['%s_convolution%i' %(scope, _)], [1, sizes['plength'], sizes['plength'], 1], [1, sizes['pstep'], sizes['pstep'], 1], 'VALID')
				model['%s_out1length' %scope] = int(math.ceil(float(model['%s_out1length' %scope] - sizes['plength'] + 1) / float(sizes['pstep'])))
				model['%s_out2length' %scope] = tf.to_int32(tf.ceil(tf.div(tf.to_float(tf.subtract(model['%s_out2length' %scope], sizes['plength'] - 1)), tf.to_float(sizes['pstep']))))
				model['%s_maxout2length' %scope] = int(math.ceil(float(model['%s_maxout2length' %scope] - sizes['plength'] + 1) / float(sizes['pstep'])))

		with tf.variable_scope('outputs'), tf.name_scope('outputs'):
			model['%s_outputs' %scope] = tf.transpose(tf.squeeze(model['%s_pooling%i' %(scope, _)], [3], '%s_outputs' %scope), [1, 0, 2])

	return model
开发者ID:aaiijmrtt,项目名称:DEEPSPEECH,代码行数:44,代码来源:cnn.py

示例14: clampSlice

    def clampSlice(self, shouldCeil, transformedCoordinates, index):

        coordinateSlice = tf.slice(transformedCoordinates, [0, index], [tf.shape(transformedCoordinates)[0], 1])

        if not shouldCeil:
            result = tf.floor(coordinateSlice)
        else:
            result = tf.ceil(coordinateSlice)

        return result
开发者ID:sudnya,项目名称:misc,代码行数:10,代码来源:SpatialTransformerLayer.py

示例15: _compare

 def _compare(self, x, use_gpu):
   np_floor, np_ceil = np.floor(x), np.ceil(x)
   with self.test_session(use_gpu=use_gpu) as sess:
     inx = tf.convert_to_tensor(x)
     ofloor, oceil = tf.floor(inx), tf.ceil(inx)
     tf_floor, tf_ceil = sess.run([ofloor, oceil])
   self.assertAllEqual(np_floor, tf_floor)
   self.assertAllEqual(np_ceil, tf_ceil)
   self.assertShapeEqual(np_floor, ofloor)
   self.assertShapeEqual(np_ceil, oceil)
开发者ID:adeelzaman,项目名称:tensorflow,代码行数:10,代码来源:cwise_ops_test.py


注:本文中的tensorflow.ceil函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。