当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.assert_rank函数代码示例

本文整理汇总了Python中tensorflow.assert_rank函数的典型用法代码示例。如果您正苦于以下问题:Python assert_rank函数的具体用法?Python assert_rank怎么用?Python assert_rank使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了assert_rank函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_model_inputs

def test_model_inputs(model_inputs):
    with tf.Graph().as_default():
        input_data, targets, lr, keep_prob = model_inputs()

        # Check type
        assert input_data.op.type == 'Placeholder',\
            'Input is not a Placeholder.'
        assert targets.op.type == 'Placeholder',\
            'Targets is not a Placeholder.'
        assert lr.op.type == 'Placeholder',\
            'Learning Rate is not a Placeholder.'
        assert keep_prob.op.type == 'Placeholder', \
            'Keep Probability is not a Placeholder.'

        # Check name
        assert input_data.name == 'input:0',\
            'Input has bad name.  Found name {}'.format(input_data.name)
        assert keep_prob.name == 'keep_prob:0', \
            'Keep Probability has bad name.  Found name {}'.format(keep_prob.name)

        assert tf.assert_rank(input_data, 2, message='Input data has wrong rank')
        assert tf.assert_rank(targets, 2, message='Targets has wrong rank')
        assert tf.assert_rank(lr, 0, message='Learning Rate has wrong rank')
        assert tf.assert_rank(keep_prob, 0, message='Keep Probability has wrong rank')

    _print_success_message()
开发者ID:DavidWhois,项目名称:English_to_French_translation,代码行数:26,代码来源:problem_unittests.py

示例2: calculate_reshape

def calculate_reshape(original_shape, new_shape, validate=False, name=None):
  """Calculates the reshaped dimensions (replacing up to one -1 in reshape)."""
  batch_shape_static = tensor_util.constant_value_as_shape(new_shape)
  if batch_shape_static.is_fully_defined():
    return np.int32(batch_shape_static.as_list()), batch_shape_static, []
  with tf.name_scope(name, "calculate_reshape", [original_shape, new_shape]):
    original_size = tf.reduce_prod(original_shape)
    implicit_dim = tf.equal(new_shape, -1)
    size_implicit_dim = (
        original_size // tf.maximum(1, -tf.reduce_prod(new_shape)))
    new_ndims = tf.shape(new_shape)
    expanded_new_shape = tf.where(  # Assumes exactly one `-1`.
        implicit_dim, tf.fill(new_ndims, size_implicit_dim), new_shape)
    validations = [] if not validate else [
        tf.assert_rank(
            original_shape, 1, message="Original shape must be a vector."),
        tf.assert_rank(new_shape, 1, message="New shape must be a vector."),
        tf.assert_less_equal(
            tf.count_nonzero(implicit_dim, dtype=tf.int32),
            1,
            message="At most one dimension can be unknown."),
        tf.assert_positive(
            expanded_new_shape, message="Shape elements must be >=-1."),
        tf.assert_equal(
            tf.reduce_prod(expanded_new_shape),
            original_size,
            message="Shape sizes do not match."),
    ]
    return expanded_new_shape, batch_shape_static, validations
开发者ID:lewisKit,项目名称:probability,代码行数:29,代码来源:batch_reshape.py

示例3: infer

def infer(encoder_cell, decoder_cell, sentences):
    tf.assert_rank(sentences, 3)
    assert sentences.get_shape()[0].value == 1  # batch size
    assert sentences.get_shape()[2].value == FEATURE_SIZE

    # stops generating output if the length reaches the double of the source
    output_len_threshold = sentences.get_shape()[1].value * 2

    final_state_tuple = encode(sentences, encoder_cell, reuse=True)
    context = bridge(final_state_tuple.c, decoder_cell.output_size, reuse=True)

    with tf.variable_scope('decoder', reuse=True):
        def cond(loop_cnt, prev_out, _, __):
            less = tf.less(loop_cnt, output_len_threshold)
            is_regular_word = tf.reduce_any(
                tf.not_equal(
                    prev_out,
                    tf.one_hot([0], FEATURE_SIZE)  # <eos>
                )
            )

            return tf.logical_and(less, is_regular_word)

        def body(loop_cnt, prev_out, prev_state, result):
            cell_output, state = decoder_cell(prev_out, prev_state)
            num_outputs = decoder_cell.output_size
            output = decoder_projection(
                cell_output,
                num_outputs=num_outputs,
                reuse=True
            )
            arg_max = tf.arg_max(output, dimension=1)
            one_hot_output = tf.one_hot(
                indices=arg_max,
                depth=num_outputs
            )

            return (
                tf.add(loop_cnt, 1),
                one_hot_output,
                state,
                result.write(result.size(), tf.cast(one_hot_output, dtype=tf.int8))
            )

        _, __, ___, inferred = tf.while_loop(
            cond,
            body,
            loop_vars=(
                tf.constant(0),
                context,
                decoder_cell.zero_state(batch_size=1, dtype=tf.float32),
                tf.TensorArray(tf.int8, size=0, dynamic_size=True)
            )
        )

        return inferred.stack()
开发者ID:ninotoshi,项目名称:playground,代码行数:56,代码来源:main.py

示例4: decode_for_training

def decode_for_training(cell, final_enc_state, labels):
    # [actual batch size, max seq len, decoder cell size]
    tf.assert_rank(labels, 3)

    cell_size = cell.output_size
    context = bridge(final_enc_state, cell_size)

    # [actual batch size, decoder cell size]
    assert context.get_shape().as_list() == [None, cell_size]

    # tf.shape(labels): tuple of 1 element
    batch_size = tf.shape(labels)[0]  # type: tf.Tensor of rank 0
    max_time_step = labels.get_shape()[1].value

    with tf.variable_scope('decoder'):
        def cond(loop_cnt, _, __, ___):
            return tf.less(loop_cnt, max_time_step)

        def body(loop_cnt, prev_label, prev_state, losses):
            cell_output, state = cell(prev_label, prev_state)
            output = decoder_projection(cell_output, cell_size)

            # cut out the `loop_cnt`-th label
            label = tf.reshape(
                tf.slice(labels, begin=[0, loop_cnt, 0], size=[batch_size, 1, cell_size]),
                shape=[batch_size, cell_size]
            )

            # loss for output past the last time step is calculated to be 0
            loss = tf.nn.softmax_cross_entropy_with_logits(
                logits=output,
                labels=label
            )

            return (
                tf.add(loop_cnt, 1),
                # pass the label as the output of the current step
                label,
                state,
                losses.write(loop_cnt, loss)
            )

        _, _, _, result_loss = tf.while_loop(
            cond,
            body,
            loop_vars=(
                tf.constant(0),
                context,
                cell.zero_state(batch_size=batch_size, dtype=tf.float32),
                tf.TensorArray(tf.float32, size=0, dynamic_size=True)
            ),
        )

        losses = tf.reduce_sum(result_loss.stack(), axis=0)
        time_steps = tf.reduce_sum(tf.reduce_sum(labels, axis=2), axis=1)
        return tf.div(losses, time_steps)
开发者ID:ninotoshi,项目名称:playground,代码行数:56,代码来源:main.py

示例5: bridge

def bridge(final_enc_state, decoder_cell_size, reuse=False):
    tf.assert_rank(final_enc_state, 2)

    with tf.variable_scope('bridge', reuse=reuse):
        context = tf.contrib.layers.fully_connected(
            inputs=final_enc_state,
            num_outputs=decoder_cell_size,
            activation_fn=tf.tanh
        )

        return context
开发者ID:ninotoshi,项目名称:playground,代码行数:11,代码来源:main.py

示例6: _check_valid_event_ndims

  def _check_valid_event_ndims(self, min_event_ndims, event_ndims):
    """Check whether event_ndims is atleast min_event_ndims."""
    event_ndims = tf.convert_to_tensor(event_ndims, name="event_ndims")
    event_ndims_ = tf.contrib.util.constant_value(event_ndims)
    assertions = []

    if not event_ndims.dtype.is_integer:
      raise ValueError("Expected integer dtype, got dtype {}".format(
          event_ndims.dtype))

    if event_ndims_ is not None:
      if event_ndims.shape.ndims != 0:
        raise ValueError("Expected scalar event_ndims, got shape {}".format(
            event_ndims.shape))
      if min_event_ndims > event_ndims_:
        raise ValueError("event_ndims ({}) must be larger than "
                         "min_event_ndims ({})".format(event_ndims_,
                                                       min_event_ndims))
    elif self.validate_args:
      assertions += [tf.assert_greater_equal(event_ndims, min_event_ndims)]

    if event_ndims.shape.is_fully_defined():
      if event_ndims.shape.ndims != 0:
        raise ValueError("Expected scalar shape, got ndims {}".format(
            event_ndims.shape.ndims))

    elif self.validate_args:
      assertions += [tf.assert_rank(event_ndims, 0, message="Expected scalar.")]
    return assertions
开发者ID:asudomoeva,项目名称:probability,代码行数:29,代码来源:bijector.py

示例7: test_rank_one_tensor_raises_if_rank_too_small_dynamic_rank

 def test_rank_one_tensor_raises_if_rank_too_small_dynamic_rank(self):
   with self.test_session():
     tensor = tf.placeholder(tf.float32, name="my_tensor")
     desired_rank = 2
     with tf.control_dependencies([tf.assert_rank(tensor, desired_rank)]):
       with self.assertRaisesOpError("my_tensor.*rank"):
         tf.identity(tensor).eval(feed_dict={tensor: [1, 2]})
开发者ID:3kwa,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例8: test_rank_one_tensor_raises_if_rank_too_small_static_rank

 def test_rank_one_tensor_raises_if_rank_too_small_static_rank(self):
   with self.test_session():
     tensor = tf.constant([1, 2], name="my_tensor")
     desired_rank = 2
     with self.assertRaisesRegexp(ValueError, "my_tensor.*rank"):
       with tf.control_dependencies([tf.assert_rank(tensor, desired_rank)]):
         tf.identity(tensor).eval()
开发者ID:3kwa,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例9: _maybe_validate_perm

def _maybe_validate_perm(perm, validate_args, name=None):
  """Checks that `perm` is valid."""
  with tf.name_scope(name, 'maybe_validate_perm', [perm]):
    assertions = []
    if not perm.dtype.is_integer:
      raise TypeError('`perm` must be integer type')

    msg = '`perm` must be a vector.'
    if perm.shape.ndims is not None:
      if perm.shape.ndims != 1:
        raise ValueError(
            msg[:-1] + ', saw rank: {}.'.format(perm.shape.ndims))
    elif validate_args:
      assertions += [tf.assert_rank(perm, 1, message=msg)]

    perm_ = tf.contrib.util.constant_value(perm)
    msg = '`perm` must be a valid permutation vector.'
    if perm_ is not None:
      if not np.all(np.arange(np.size(perm_)) == np.sort(perm_)):
        raise ValueError(msg[:-1] + ', saw: {}.'.format(perm_))
    elif validate_args:
      assertions += [tf.assert_equal(
          tf.contrib.framework.sort(perm),
          tf.range(tf.size(perm)),
          message=msg)]

    return assertions
开发者ID:asudomoeva,项目名称:probability,代码行数:27,代码来源:transpose.py

示例10: _maybe_validate_rightmost_transposed_ndims

def _maybe_validate_rightmost_transposed_ndims(
    rightmost_transposed_ndims, validate_args, name=None):
  """Checks that `rightmost_transposed_ndims` is valid."""
  with tf.name_scope(name, 'maybe_validate_rightmost_transposed_ndims',
                     [rightmost_transposed_ndims]):
    assertions = []
    if not rightmost_transposed_ndims.dtype.is_integer:
      raise TypeError('`rightmost_transposed_ndims` must be integer type.')

    if rightmost_transposed_ndims.shape.ndims is not None:
      if rightmost_transposed_ndims.shape.ndims != 0:
        raise ValueError('`rightmost_transposed_ndims` must be a scalar, '
                         'saw rank: {}.'.format(
                             rightmost_transposed_ndims.shape.ndims))
    elif validate_args:
      assertions += [tf.assert_rank(rightmost_transposed_ndims, 0)]

    rightmost_transposed_ndims_ = tf.contrib.util.constant_value(
        rightmost_transposed_ndims)
    msg = '`rightmost_transposed_ndims` must be non-negative.'
    if rightmost_transposed_ndims_ is not None:
      if rightmost_transposed_ndims_ < 0:
        raise ValueError(msg[:-1] + ', saw: {}.'.format(
            rightmost_transposed_ndims_))
    elif validate_args:
      assertions += [tf.assert_non_negative(
          rightmost_transposed_ndims, message=msg)]

    return assertions
开发者ID:asudomoeva,项目名称:probability,代码行数:29,代码来源:transpose.py

示例11: test_raises_if_rank_is_not_scalar_dynamic

 def test_raises_if_rank_is_not_scalar_dynamic(self):
   with self.test_session():
     tensor = tf.constant([1, 2], dtype=tf.float32, name="my_tensor")
     rank_tensor = tf.placeholder(tf.int32, name="rank_tensor")
     with self.assertRaisesOpError("Rank must be a scalar"):
       with tf.control_dependencies([tf.assert_rank(tensor, rank_tensor)]):
         tf.identity(tensor).eval(feed_dict={rank_tensor: [1, 2]})
开发者ID:3kwa,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例12: test_rank_zero_tensor_raises_if_rank_too_small_static_rank

 def test_rank_zero_tensor_raises_if_rank_too_small_static_rank(self):
     with self.test_session():
         tensor = tf.constant(1, name="my_tensor")
         desired_rank = 1
         with self.assertRaisesRegexp(ValueError, "fail.*my_tensor.*must have rank 1"):
             with tf.control_dependencies([tf.assert_rank(tensor, desired_rank, message="fail")]):
                 tf.identity(tensor).eval()
开发者ID:BloodD,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例13: test_raises_if_rank_is_not_integer_dynamic

 def test_raises_if_rank_is_not_integer_dynamic(self):
     with self.test_session():
         tensor = tf.constant([1, 2], dtype=tf.float32, name="my_tensor")
         rank_tensor = tf.placeholder(tf.float32, name="rank_tensor")
         with self.assertRaisesRegexp(TypeError, "must be of type <dtype: 'int32'>"):
             with tf.control_dependencies([tf.assert_rank(tensor, rank_tensor)]):
                 tf.identity(tensor).eval(feed_dict={rank_tensor: 0.5})
开发者ID:BloodD,项目名称:tensorflow,代码行数:7,代码来源:check_ops_test.py

示例14: _assert_tensor_shape

def _assert_tensor_shape(tensor, shape, display_name):
    assert tf.assert_rank(tensor, len(shape), message='{} has wrong rank'.format(display_name))

    tensor_shape = tensor.get_shape().as_list() if len(shape) else []

    wrong_dimension = [ten_dim for ten_dim, cor_dim in zip(tensor_shape, shape)
                       if cor_dim is not None and ten_dim != cor_dim]
    assert not wrong_dimension, \
        '{} has wrong shape.  Found {}'.format(display_name, tensor_shape)
开发者ID:HarshSharma12,项目名称:CarND-Semantic-Segmentation,代码行数:9,代码来源:project_tests.py

示例15: encode

def encode(inputs, cell, reuse=False):
    tf.assert_rank(inputs, 3)

    time_steps = tf.reduce_sum(tf.reduce_sum(inputs, axis=2), axis=1)

    with tf.variable_scope('encoder', reuse=reuse):
        embedded = tf.contrib.layers.fully_connected(
            inputs=inputs,
            num_outputs=cell.output_size,
            activation_fn=tf.sigmoid
        )

        tf.assert_rank(embedded, 3)

        _, final_state_tuple = tf.nn.dynamic_rnn(
            cell,
            embedded,
            sequence_length=time_steps,
            dtype=tf.float32,
        )

        return final_state_tuple
开发者ID:ninotoshi,项目名称:playground,代码行数:22,代码来源:main.py


注:本文中的tensorflow.assert_rank函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。