本文整理汇总了Python中taref.plotter.api.Plotter类的典型用法代码示例。如果您正苦于以下问题:Python Plotter类的具体用法?Python Plotter怎么用?Python Plotter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Plotter类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: line_cs
def line_cs(self, ind=210):
print self.frequency[ind]/1e9
pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_cs_{}".format(self.name))
pl, pf=line(self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0])[:, ind], plotter=pl, linewidth=1.0)
pl.xlabel="Yoko (V)"
pl.ylabel="Magnitude (dB)"
return pl
示例2: line_cs2
def line_cs2(self, ind=210, f0=5.35e9, alpha=0.45):
fq_vec=array([sqrt(f*(f-2*qdt.call_func("Lamb_shift", f=f, f0=f0, couple_mult=alpha))) for f in self.frequency])
print self.frequency[ind]/1e9, fq_vec[ind]/1e9
pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_cs_{}".format(self.name))
pl, pf=line(self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0])[:, ind], plotter=pl, linewidth=1.0)
pl.xlabel="Yoko (V)"
pl.ylabel="Magnitude (dB)"
return pl
示例3: anton_lamb_shift_plot
def anton_lamb_shift_plot(fig_width=9.0, fig_height=6.0):
"""reproduces coupling/lamb shift plot in Anton's paper"""
pl=Plotter(fig_width=fig_width, fig_height=fig_height)
EjdivEc=linspace(0.1, 300, 10000)
Ej=EjdivEc*antonqdt.Ec
#E0, E1, E2=antonqdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
fq=antonqdt._get_fq(Ej)
#anharm=(E2-E1)-(E1-E0)
#E0p, E1p, E2p=antonqdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)
#anharmp=(E2p-E1p)-(E1p-E0p)
#fq= (E1-E0)/h#qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
coup=antonqdt._get_coupling(fq)
ls=antonqdt._get_Lamb_shift(fq)
line(fq/antonqdt.f0, 2.0*coup/(2.0*antonqdt.max_coupling), plotter=pl, linewidth=0.5, color="red", label=r"$\Gamma$, $N=10$")
line(fq/antonqdt.f0, ls/(2.0*antonqdt.max_coupling), plotter=pl, color="green", linewidth=0.5, label=r"$\Delta$, $N=10$")
#antonqdt.Np=3
Ej=EjdivEc*antonqdt3.Ec
fq=antonqdt3._get_fq(Ej)
coup=antonqdt3._get_coupling(fq)
ls=antonqdt3._get_Lamb_shift(fq)
line(fq/antonqdt3.f0, 2.0*coup/(2.0*antonqdt3.max_coupling), plotter=pl, linewidth=0.5, color="blue", label=r"$\Gamma$, $N=3$")
line(fq/antonqdt3.f0, ls/(2.0*antonqdt3.max_coupling), plotter=pl, color="black", linewidth=0.5, label=r"$\Delta$, $N=3$")
pl.set_ylim(-0.4, 1.0)
pl.set_xlim(0.2, 1.8)
pl.xlabel=r"$f_{10}/f_{IDT}$"
pl.ylabel=r"$\Delta/\Gamma_{10}^{MAX}$"
pl.legend(loc='upper right')
return pl
示例4: magabs_colormesh3
def magabs_colormesh3(self, f0=5.35e9, alpha=0.45, pl=None):
fq_vec=array([sqrt(f*(f-2*qdt.call_func("Lamb_shift", f=f, f0=f0, couple_mult=alpha))) for f in self.frequency])
pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
pl, pf=colormesh(self.yoko, self.frequency/1e9, absolute((self.Magcom.transpose()-self.Magcom[:, 0]).transpose()), plotter=pl)
#pf.set_clim(-0.3, 0.1)
#pl.set_ylim(min(fq_vec/1e9), max(fq_vec/1e9))
#pl.set_xlim(min(self.yoko), max(self.yoko))
pl.ylabel="Yoko (V)"
pl.xlabel="Frequency (GHz)"
return pl
示例5: magabs_colormesh2
def magabs_colormesh2(self, offset=-0.08, flux_factor=0.52, Ejmax=h*44.0e9, f0=5.35e9, alpha=0.7, pl=None):
fq_vec=array([sqrt(f*(f+alpha*calc_freq_shift(f, qdt.ft, qdt.Np, f0, qdt.epsinf, qdt.W, qdt.Dvv))) for f in self.frequency])
pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
pl, pf=colormesh(fq_vec, self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0]), plotter=pl)
pf.set_clim(-0.3, 0.1)
#pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
pl.set_ylim(min(self.yoko), max(self.yoko))
pl.ylabel="Yoko (V)"
pl.xlabel="Frequency (GHz)"
return pl
示例6: energy_level_plot
def energy_level_plot():
pl=Plotter(fig_width=9.0, fig_height=6.0)
set_tag(qdt, "EjdivEc", log=False)
E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
Ej=EjdivEc*qdt.Ec
pl, pf=line(EjdivEc, (E0+Ej)/h/1e9, linestyle="dashed", linewidth=1.0, plotter=pl)
line(EjdivEc, (E1+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
line(EjdivEc, (E2+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0)
E0p, E1p, E2p=qdt.call_func("lamb_shifted_transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
line(EjdivEc, (E0p+Ej)/h/1e9, plotter=pl, color="red", linewidth=1.0)
line(EjdivEc, (E1p+Ej)/h/1e9, plotter=pl, color="green", linewidth=1.0)
line(EjdivEc, (E2p+Ej)/h/1e9, plotter=pl, color="purple", linewidth=1.0)
pl.xlabel="$E_j/E_c$"
pl.ylabel="Frequency (GHz)"
return pl
示例7: magabs_colormesh
def magabs_colormesh(self):
pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
pl, pf=colormesh(self.frequency/1e9, self.yoko, (self.MagdB.transpose()-self.MagdB[:, 0]), plotter=pl)
pf.set_clim(-0.3, 0.1)
pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
pl.set_ylim(min(self.yoko), max(self.yoko))
pl.ylabel="Yoko (V)"
pl.xlabel="Frequency (GHz)"
return pl
示例8: ifft_plot
def ifft_plot(self):
pl=Plotter(fig_width=6, fig_height=4)
line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,self.on_res_ind])), label="On resonance")
line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,0])), label="Off resonance", color="red")
pl.legend()
pl.set_xlim(0, 100)
pl.xlabel="Time (#)"
pl.ylabel="Absolute Magnitude"
return pl
示例9: energy_level_plot
def energy_level_plot(qbt):
"""confirmation plot of transmon energy levels"""
pl=Plotter(fig_width=9.0, fig_height=6.0)
EjdivEc=linspace(0.1, 300, 3000)
Ej=EjdivEc*qbt.Ec
E0, E1, E2=qbt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
line(EjdivEc, (E0+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0, color="blue")
line(EjdivEc, (E1+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0, color="red")
line(EjdivEc, (E2+Ej)/h/1e9, plotter=pl, linestyle="dashed", linewidth=1.0, color="green")
Ec=qbt.Ec
E0 = sqrt(8.0*Ej*Ec)*0.5 - Ec/4.0
E1 = sqrt(8.0*Ej*Ec)*1.5 - (Ec/12.0)*(6.0+6.0+3.0)
E2 = sqrt(8.0*Ej*Ec)*2.5 - (Ec/12.0)*(6.0*2**2+6.0*2+3.0)
line(EjdivEc, E0/h/1e9, plotter=pl, linewidth=0.5, color="blue")
line(EjdivEc, E1/h/1e9, plotter=pl, linewidth=0.5, color="red")
line(EjdivEc, E2/h/1e9, plotter=pl, linewidth=0.5, color="green")
pl.xlabel="$E_j/E_c$"
pl.ylabel="Frequency (GHz)"
return pl
示例10: magabs_colormesh
def magabs_colormesh(self, offset=-0.08, flux_factor=0.52, Ejmax=h*44.0e9, f0=5.35e9, alpha=0.7, pl=None):
fq_vec=array([sqrt(f*(f+alpha*calc_freq_shift(f, qdt.ft, qdt.Np, f0, qdt.epsinf, qdt.W, qdt.Dvv))) for f in self.frequency])
freq, frq2=flux_parabola(self.yoko, offset, 0.16, Ejmax, qdt.Ec)
pl=Plotter(fig_width=9.0, fig_height=6.0, name="magabs_{}".format(self.name))
pl, pf=colormesh(freq, fq_vec, (self.MagdB.transpose()-self.MagdB[:, 0]).transpose(), plotter=pl)
pf.set_clim(-0.3, 0.1)
line([min(freq), max(freq)], [min(freq), max(freq)], plotter=pl)
flux_o_flux0=flux_over_flux0(self.yoko, offset, flux_factor)
qEj=Ej(Ejmax, flux_o_flux0)
EjdivEc=qEj/qdt.Ec
ls_fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
ls_fq2=qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
frq2=qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)/h
line(ls_fq, ls_fq2, plotter=pl)
#pl.set_xlim(min(self.frequency/1e9), max(self.frequency/1e9))
#pl.set_ylim(min(self.yoko), max(self.yoko))
pl.ylabel="Yoko (V)"
pl.xlabel="Frequency (GHz)"
return pl
示例11: anharm_plot2
def anharm_plot2():
"""reproduces anharm plot in Anton's paper"""
set_tag(qdt, "EjdivEc", log=False)
set_tag(qdt, "Ej", log=False)
pl=Plotter(fig_width=9.0, fig_height=6.0)
#qdt.epsinf=qdt.epsinf/3.72
#qdt.Np=10
#qdt.Ec=qdt.fq*0.1*h
print qdt.max_coupling, qdt.coupling_approx
#flux_o_flux0=qdt.call_func("flux_over_flux0", voltage=yoko)
#Ej=qdt.call_func("Ej", flux_over_flux0=flux_o_flux0)
#EjdivEc=Ej/qdt.Ec
anharm=qdt.call_func("anharm", EjdivEc=EjdivEc)
anharmp=qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)
fq=qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
ls_fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
ls_fq2=qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
#pl, pf=line(fq, anharm/h, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")
pl, pf=line(EjdivEc, anharmp/h/1e9, linewidth=1.0, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$", plotter=pl)
line(EjdivEc, anharm/h/1e9, linewidth=1.0, color="purple", label=r"anharm", plotter=pl)
line(EjdivEc, (ls_fq-fq)/1e9, plotter=pl, color="blue", linewidth=1.0, label=r"$\Delta_{1,0}$")
E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
fq2=(E2-E1)/h
line(EjdivEc, (ls_fq2-fq2)/1e9, plotter=pl, color="red", linewidth=1.0, label=r"$\Delta_{2,1}$")
pl.set_ylim(-2, 1.5)
#pl.set_xlim(0.0, 70)
pl.xlabel=r"$E_j/E_c$"
pl.ylabel=r"$\Delta (GHz)$"
#pl.legend(loc='lower right')
#fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
#line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)
#line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
#line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
return pl
示例12: anharm_plot
def anharm_plot(qdt, fig_width=9.0, fig_height=6.0, ymin=-1.5, ymax=1.0):
"""Lamb shifted anharmonicity plot"""
pl=Plotter(fig_width=fig_width, fig_height=fig_height)
EjdivEc=linspace(0.1, 300, 3000)
Ej=EjdivEc*qdt.Ec
E0, E1, E2=qdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
anharm=(E2-E1)-(E1-E0)
E0p, E1p, E2p=qdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)
anharmp=(E2p-E1p)-(E1p-E0p)
fq= (E1-E0)/h
ls_fq=(E1p-E0p)/h
fq2=(E2-E1)/h
ls_fq2=(E2p-E1p)/h
line(EjdivEc, anharm/h/1e9, plotter=pl, linewidth=0.5, color="purple", label=r"anharm")
line(EjdivEc, anharmp/h/1e9, plotter=pl, linewidth=0.5, color="black", label=r"ls anharm")
line(EjdivEc, (ls_fq-fq)/1e9, plotter=pl, color="blue", linewidth=0.5, label=r"$\Delta_{1,0}$")
line(EjdivEc, (ls_fq2-fq2)/1e9, plotter=pl, color="red", linewidth=0.5, label=r"$\Delta_{2,1}$")
pl.set_ylim(ymin, ymax)
#pl.set_xlim(0.7, 1.3)
pl.xlabel=r"$E_J/E_C$"
pl.ylabel=r"$\Delta$ (GHz)"
pl.legend(loc='lower left')
#pl.set_ylim(-2, 1.5)
#pl.set_xlim(0.0, 70)
#anharm=qdt.call_func("anharm", EjdivEc=EjdivEc)
#anharmp=qdt.call_func("lamb_shifted_anharm", EjdivEc=EjdivEc)
#fq=qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
#ls_fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
#ls_fq2=qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
#pl, pf=line(fq, anharm/h, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")
#pl, pf=line(EjdivEc, anharmp/h/1e9, linewidth=1.0, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$", plotter=pl)
#line(EjdivEc, anharm/h/1e9, linewidth=1.0, color="purple", label=r"anharm", plotter=pl)
#line(EjdivEc, (ls_fq-fq)/1e9, plotter=pl, color="blue", linewidth=1.0, label=r"$\Delta_{1,0}$")
#E0, E1, E2=qdt.call_func("transmon_energy_levels", EjdivEc=EjdivEc, n_energy=3)
#fq2=(E2-E1)/h
#line(EjdivEc, (ls_fq2-fq2)/1e9, plotter=pl, color="red", linewidth=1.0, label=r"$\Delta_{2,1}$")
#pl.xlabel=r"$E_j/E_c$"
#pl.ylabel=r"$\Delta (GHz)$"
#pl.legend(loc='lower right')
#fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
#line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)
#line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
#line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
return pl
示例13: ifft_plot
def ifft_plot(self):
pl=Plotter(fig_width=6, fig_height=4)
line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,self.on_res_ind])), label="On resonance")
line("ifft_{}".format(self.name), absolute(fft.ifft(self.Magcom[:,0])), label="Off resonance", color="red")
pl.legend()
pl.set_xlim(0, 100)
pl.xlabel="Time (#)"
pl.ylabel="Absolute Magnitude"
return pl
#ifft_plot(s4a1_mp).show()
#d.savefig("/Users/thomasaref/Dropbox/Current stuff/Linneaus180416/", "trans_ifft.pdf")
#d.show()
示例14: anton_anharm_plot
def anton_anharm_plot(fig_width=9, fig_height=6):
"""reproduces anharm plot in Anton's paper"""
pl=Plotter(fig_width=fig_width, fig_height=fig_height)
#print qdt.f0*h/qdt.Ec, qdt.epsinf/3.72
#qdt.Np=10
#qdt.Ec=qdt.f0*0.1*h
EjdivEc=linspace(0.1, 300, 3000)
Ej=EjdivEc*antonqdt.Ec
print antonqdt.C, antonqdt.C, antonqdt.Ec, antonqdt._get_Ec(antonqdt.C)
print antonqdt.max_coupling, antonqdt.epsinf, antonqdt.f0*h/antonqdt.Ec
E0, E1, E2=antonqdt._get_transmon_energy_levels(Ej=Ej, n_energy=3)
anharm=(E2-E1)-(E1-E0)
E0p, E1p, E2p=antonqdt._get_lamb_shifted_transmon_energy_levels(Ej=Ej, n_energy=3)
anharmp=(E2p-E1p)-(E1p-E0p)
fq= (E1-E0)/h#qdt.call_func("fq", Ej=EjdivEc*qdt.Ec)
ls_fq=(E1p-E0p)/h #qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
fq2=(E2-E1)/h
ls_fq2=(E2p-E1p)/h #qdt.call_func("lamb_shifted_fq2", EjdivEc=EjdivEc)
line(fq/antonqdt.f0, (anharmp/h-anharm/h)/(2.0*antonqdt.max_coupling), plotter=pl, linewidth=0.5, color="black", label=r"$\Delta_{2,1}-\Delta_{1,0}$")
line(fq/antonqdt.f0, (ls_fq-fq)/(2.0*antonqdt.max_coupling), plotter=pl, color="blue", linewidth=0.5, label=r"$\Delta_{1,0}$")
line(fq/antonqdt.f0, (ls_fq2-fq2)/(2.0*antonqdt.max_coupling), plotter=pl, color="red", linewidth=0.5, label=r"$\Delta_{2,1}$")
pl.set_ylim(-1.0, 0.6)
pl.set_xlim(0.7, 1.3)
pl.xlabel=r"$f_{10}/f_{IDT}$"
pl.ylabel=r"$\Delta/\Gamma_{10}^{MAX}$"
pl.legend(loc='lower left')
#fq=qdt.call_func("lamb_shifted_fq", EjdivEc=EjdivEc)
#line(EjdivEc, fq, plotter=pl, color="green", linewidth=0.5)
#line(EjdivEc, E1p, plotter=pl, color="green", linewidth=0.5)
#line(EjdivEc, E2p, plotter=pl, color="purple", linewidth=0.5)
return pl
示例15:
#b.save_folder.main_dir=b.name
if __name__=="__main__":
#pl.nplot=4
a.read_data()
b.read_data()
#b.filter_type="None"
#pl_raw=b.magabs_colormesh()
#pl_ifft=b.ifft_plot()#.show()
b.filter_type="FFT"
pl=Plotter(name="pwr_sat", nrows=2, ncols=2)
onres=(20*log10(absolute(b.MagcomFilt[69, :, :])).transpose()-bg_A4(b.freq_axis[69]*1e9)).transpose()
pl, pf=colormesh(b.flux_axis, b.pwr-30-60, 10**(onres/20.0).transpose(),
ylabel="Power (dBm) ", xlabel=r"$\Phi/\Phi_0$",
auto_xlim=False, x_min=0.35, x_max=0.5,
auto_ylim=False, y_min=-30-90, y_max=10-90, nrows=2, ncols=2, nplot=1, pl=pl, pf_too=True, fig_width=fig_width, fig_height=fig_height)
ax=pl.axes
ax.set_yticks(linspace(-30.0-90, 10.0-90, 3))
ax.set_xticks(linspace(0.38, 0.48, 3))
#b.pwr, b.freq_axis[a.end_skip:-b.end_skip], 10**(onres/20.0), #absolute(a.MagcomFilt[a.end_skip:-a.end_skip, 635, :]),
# ylabel="Frequency (GHz)", xlabel=r"Power (dBm")#.show()
pl.nplot=2
onres=20*log10(absolute(b.MagcomFilt[69, 635, :]))-bg_A4(b.frequency[69])